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Abstract
Illumination effects cause problems for many computer vi-

sion algorithms. We present a user-friendly interactive system

for robust illumination-invariant image generation. Compared

with the previous automated illumination-invariant image deriva-

tion approaches, our system enables users to specify a particu-

lar kind of illumination variation for removal. The derivation of

illumination-invariant image is guided by the user input. The in-

put is a stroke that defines an area covering a set of pixels whose

intensities are influenced predominately by the illumination vari-

ation. This additional flexibility enhances the robustness for pro-

cessing non-linearly rendered images and the images of the scenes

where their illumination variations are difficult to estimate au-

tomatically. Finally, we present some evaluation results of our

method.

Introduction
Illumination conditions affect many computer vision algo-

rithms from fundamental level to high level. For instance, un-

wanted shadows can cause artefacts in image segmentation, track-

ing, and object recognition. This is due to the difficulty in distin-

guishing the different image edges caused by illumination discon-

tinuity, surface material [10], occlusion [16], and object bound-

ary [4]. An illumination-invariant image is therefore in great de-

mand in both computer vision and computer graphics communi-

ties.

A shadow is an area where light from a light source is

blocked by an obstacle. This is perhaps the most important phe-

nomenon caused by illumination. There has been much previous

work [9, 7, 13, 15, 12, 11] focusing on removing shadows from

single images. These approaches aim at restoring an image with

predominant shadows removed. In this restored image, most sur-

face texture information is intact. The minor shadows are usu-

ally kept and they are regarded as the surface textures. The dif-

fuse (extremely soft) shadows are also not removed because these

approaches rely on image segmentation or image edge detection

but the soft shadow boundaries are not easily detectable. Even

when the soft shadow edges are detected, it is still very difficult

to restore the penumbra information as the surface textures are

the strong noise that affect illumination estimation. In fact, the

recovery of penumbra is the most difficult part of this problem.

Only a few of them [15, 11] can preserve the penumbra texture

for a wide range of different shadows, such as broken shadows,

coloured shadows, and soft shadows. The recovery process is also

computation-costly that even some fast methods [15, 11] can still

take several seconds to solve, by using an average machine.

Intrinsic image decomposition divides a single image into

two components: a shading component and a reflectance com-

ponent which is independent of illumination. The original sin-

gle image is the product of these two components. These ap-

proaches [2, 14, 3] commonly make two assumptions: (1) Neigh-

bouring pixels have the same reflectance if their chromaticities are

similar; (2) Intensity discontinuities in the luminance of an im-

age are caused by sharp reflectance changes and the illumination

change is only smooth. The decomposed components are useful

for image editing, such as re-colouring and surface material re-

placement. Most of them require a sliding window to process a

local image block and an optimisation energy function to enforce

the smoothness of decomposition results for different local image

blocks. The optimisation process is usually very computational-

costly as it requires the adjustment for every single pixel in each

iteration. The resulting reflectance component can often contain

visible illumination traces.

Illumination-invariant image computation is related to the in-

trinsic image derivation. An image is derived that depends only

on reflectance. An important illuminant invariant image is derived

in work [8] where it was shown that there existed a projection di-

rection in a log RGB image that depended only on reflectance.

Initially, the calibration direction was found using a calibration

procedure but [6] adopts an entropy minimisation procedure to

find the best projection direction. The intuition here is that the

same surface in a log RGB space (and assuming Planckian Illu-

mination) will as the illumination changes produces values that

fall on a line. Different surfaces induce different parallel line.

The projection direction, orthogonal to the direction of variance,

was shown to minimise entropy. Unfortunately, for the entropy

minimisation strategy to work the input should be raw linear im-

ages. This is a serious limitation - one which we address here -

because many of the applications of intrinsic images are for ren-

dered, non-linear, images (e.g. you want to remove a shadow on

a family photo). The entropy minimisation strategy also does not

guarantee the best invariant direction when the predominant 2D

projection direction is not caused by the prevailing illumination.

The derivation process can also remove important texture infor-

mation when the intensity variation caused by texture is similar

to the estimated illumination variation. When the illumination in-

variant direction is known, these algorithms are very fast (usually

only take some milliseconds). Although the invariant methods [6]

and [9] at a first step produce a single linear combination of log

chromaticity values that is invariant to illumination, this can be

converted into a pseudo colour chromaticity image [5].

This paper is concerned with a novel interactive approach

for illumination-invariant image derivation. Instead of finding

the invariant direction by either camera calibration [9] or entropy

minimisation [6], we require the user to supply some easy hints

(usually only one single stroke) to guide the derivation of the illu-

mination variation direction. The required user input is a simple

stroke that indicates an area covering a set of pixels whose inten-

sity variations are predominately caused by a variation in illumi-

nation. This additional user task is easy and quick to perform. It
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also makes the illumination-invariant derivation steerable for the

best result. Our method works in a very simple way: Given a seg-

ment of an image defined by a single input stroke, the pixels of

that segment are divided into two groups according to the features

of their intensities and coordinates. To get this illumination invari-

ant direction, all the RGB intensity values of the image are first

converted to 2D log geometric mean chromaticites by projecting

their 3D log geometric mean chromaticities onto a plane [6]. It is

assumed that the intensity variation of the pixels in this segment is

mainly caused by the illumination. On this 2D chromaticty plane,

the intensity difference between these two groups thus represents

the illumination direction. As the given rough segment can con-

tain noise and outliers (usually caused by surface texture or sur-

face material change), some outlier amendment steps are also ap-

plied to resolve this issue. To get the 1D illumination-invariant

image, our method projects the 2D chromaticities onto a line or-

thogonal to the illumination invariant direction vector. The 2D

illumination-invariant image can be obtained by applying a 1D-

to-3D projection to the projected 1D illumination-invariant val-

ues.

This paper is organised as follows. Firstly, we describe our

user interaction design and the pre-processing step for user input.

Secondly, we describe our approach for illumination-invariant im-

age generation guided by user input. Finally, some evaluation re-

sults of our interactive illumination-invariant image are shown.

User Interaction And Pre-Processing
In this section, we describe our user interaction design and

its algorithm.

User Interaction
Fig. 1 shows the prototype of our user interface and the de-

scription of its controls. The required mark is a segment in a

shape that is similar to an ellipse, e.g., the divided mark in blue

and red in Fig. 1. The direction of its semi-major axis indicates

the potentially strongest intensity gradient change direction. This

requirement is easy to fulfil and it gives an additional cue to make

our user input pre-processing more resistant to strong surface tex-

tures. Our system also allows users to supply multiple marks to

improve the result. The proposed drawing actions have two types:

Mark Addition Mark addition is equivalent to adding or some-

times merging a new part to the previous marks. This is done by

applying a logical or image operation as follows:

Nn = N ∨Na (1)

where N refers to the current mask of mark, Na is the additional

mask of mark drawn by user, Nn is the updated mask of mark.

Mark Subtraction Mark subtraction is similar to a eraser which

is used to remove the existing marks. Similar to Eq. 1, mark sub-

traction is done by applying two logical image operations as fol-

lows:

Nn = N ∧¬Na (2)

Pre-Processing
Given the marked pixels of an image, our pre-processing step

divides them into two groups. The marked pixels’ RGB intensi-

ties and pixel coordinates are used as the features for division. For

each marked illuminant change, we find the RGB that is in the

shadow and the one outside the shadow by a K-Means++ cluster-

ing [1]. The marked pixels’ 2D pixel coordinates are not directly

used as the features. Instead, they are processed using PCA [17]

and only their scores of the first principle component are used as

the feature of location. We further normalise the scores of the first

principle such that their values are in the range [0,1]. The intu-

ition is that the vector of the first principle dimension is close to

the major semi-axis of an ellipse. The direction of this semi-axis

indicates the direction of the strongest illumination change. The

RGB intensities are also normalised to the range [0,1]. Therefore,

our final feature space has 4 dimensions: three for RGB intensi-

ties and one for pixel location. Our main configuration for this

K-Means++ clustering are: (1) Distance Measure: Squared Eu-

clidean distance; (2) Maximum number of iteration: 100. The

cluster with the lowest mean for its RGB intensity is considered

as a shadow cluster and vice versa. For each cluster, we find the

median RGB intensities.

Illumination-Invariant Image
Using the algorithm described in [6], the RGB intensities

of the original image and the two single median RGB intensities

(analysed from the user input) are first projected onto a 2D log

chromaticity plane such that each pixel has two log chromaticity

values. The user input provides an important cue for finding the

accurate projection direction under such conditions. Given the

converted 2D log chromaticity vectors CL (lit) and CS (shadow)

for the two single median RGB intensities, the normalised illumi-

nation direction vector P⊥ is

P⊥ =
CL −CS

|CL −CS|
. (3)

The projection (i.e. illumination-invariant) vector P is orthogonal

to P⊥ and can be computed by rotating P⊥ by 90 degrees clock-

wise as the follows

P =

[

0 −1

1 0

]

P⊥
. (4)

An example of this projection is shown in Fig. 2. Given a pixel’s

2D log chromaticity vector and the illumination-invariant vector

P, its 1D illumination-invariant value and 3D L1 log chromaticity

value can be computed using the projection algorithm described

in [6]. An example of this illumination-invariant image is shown

in Fig 1.

Evaluation
In this section, we first show some typical examples with a

result comparison highlighting the advantage of using user inter-

action. Finally, some failure cases are shown.

Results
In Fig. 3, some typical examples are shown. This set of ex-

amples covers a wide range of different illumination conditions,

such as broken shadows (row 3, 4, 9, and 10), soft shadows (row

2 and 7), coloured shadows (row 1 and 11) as well as the other

trivial shadows. Compared with the automated entropy minimisa-

tion approach [6], our method produces more clean (shadow-free)

illumination-invariant images for row 1, 2, 6, 8, 9, and 11. Our

results in row 3, 4, 7, and 10 also retain more surface texture and



Open Marking Mode Save Reset Show 2D Chromaticity Plot

Stroke Divided Mark

Figure 1: Graphical user interface: (1) open – open an image file; (2) marking mode – choose either to draw or to erase marks; (3) save –

save the illumination-invariant images; (4) reset – clear all marks; (5) stroke – a stroke enclosing an area of mark; (6) divided mark – the

mark being divided into a lit part (in red) and a shadow part (in blue). The three images shown in the interface are: left – original RGB

image; middle – 1D illumination-invariant image; right – L1 illumination-invariant log chromaticity image. The input image is taken

from a shadow removal dataset [11].

Figure 2: Example of illumination-invariant projection in a 2D log

chromaticity space defined in [6]. The log chromaticity points are

projected on to the projection line (yellow). The data displayed in

this figure corresponds to the image data in Fig. 1.

chromaticity information. For the images in row 5, the energy

minimisation approach produces slightly better results than ours.

For a 0.3 mega-pixel image, our single thread MATLAB imple-

mentation usually takes 0.3s to process on a 2.4GHz machine. In

summary, with the assistance of user input, our approach produces

better results for most difficult images at a very fast processing

speed.

Failure Cases
Since we still assume the near linearity of pixel intensities,

our approach fails when the image has undergone a heavy non-

Figure 4: Failure cases (heavily JPEG compressed): left – original

image with user input; middle – 1D illumination-invariant image;

right – L1 log chromaticity illumination-invariant image.

linear rendering process, e.g., low quality JPEG compression. A

failure cases is shown in Fig. 4. In Fig. 4, the shadow and the

JPEG blocks are clearly visible in the 1D illumination-invariant

image and its L1 log chromaticity image almost contains no in-

formation. Fig. 5 shows the 2D log chromaticity plot of Fig. 4.

Conclusion
We have presented a novel approach for interactive

illumination-invariant image derivation. Using our system, users

are only required to supply a simple stroke defining an area in

an image where the illumination change is significant. Compared

with other automated methods, this additional hint significantly

enhances the robustness of finding the illumination-invariant di-

rection and makes the illumination-invariant image derivation

steerable. Future work includes: (1) A more noise-resistant user

input analysis; (2) A more adaptive algorithm to deal with the

non-linearity of rendered images.
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