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AbstractÐ Effective communication is essential for safety
and efficiency in human-robot collaboration, particularly in
shared workspaces. This paper investigates the impact of
nonverbal communication on human-robot interaction (HRI) by
integrating reactive light signals and emotional displays into a
robotic system. We equipped a Franka Emika Panda robot with
an LED strip on its end effector and an animated facial display
on a tablet to convey movement intent through colour-coded
signals and facial expressions. We conducted a human-robot
collaboration experiment with 18 participants, evaluating three
conditions: LED signals alone, LED signals with reactive emo-
tional displays, and LED signals with pre-emptive emotional
displays. We collected data through questionnaires and position
tracking to assess anticipation of potential collisions, perceived
clarity of communication, and task performance. The results
indicate that while emotional displays increased the perceived
interactivity of the robot, they did not significantly improve
collision anticipation, communication clarity, or task efficiency
compared to LED signals alone. These findings suggest that
while emotional cues can enhance user engagement, their
impact on task performance in shared workspaces is limited.

I. INTRODUCTION

Robots have transformed industries by surpassing humans

in precision, accuracy, durability, and speed [1], making them

ideal for tasks that are dangerous, repetitive, or physically

demanding [2]. However, robots still lag behind humans in

dexterity and complex decision-making. To address these

limitations and optimise performance, collaboration between

humans and robots in shared workspaces has become increas-

ingly important. In such environments, effective communi-

cation is crucial to ensure both safety and efficiency. This

paper explores how nonverbal communication, specifically

through reactive light signals and emotional displays, can

enhance human-robot interaction (HRI) by enabling more

intuitive and responsive behaviour from robotic systems.

Traditionally, industrial robots have been confined to en-

closed areas for safety reasons. Although their movements

are predictable, this physical separation limits real-time co-

operation. Collaborative robots, or cobots, were designed to

overcome this barrier by safely operating alongside humans

in shared spaces [3]. By combining human adaptability

with the precision and resilience of cobotsÐand enhancing

communication through nonverbal cuesÐthese collaborative
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systems can significantly improve productivity and workflow

efficiency.

Fig. 1. Our experiment setup to study whether emotional display (displayed
on a tablet) with LED signals (located on the end-effector) improves HRI
in shared workspaces.

Collaborative robots (cobots) are increasingly integrated

into industrial settings to enhance productivity and flexi-

bility [4]. However, ensuring safety in shared human-robot

workspaces remains a critical challenge. To prevent collisions

and support seamless collaboration, the robot must convey its

intentions through clear and intuitive signals. In many indus-

trial environments, auditory communication can be unreliable

due to high levels of background noise. As a result, nonverbal

communication becomes not only preferable but essential.

By employing visual signals, such as lights, gestures, or

expressive displays, robots can communicate their actions

and intentions, potentially improving safety and coordination

in shared workspaces. This paper focuses on enhancing HRI

in a shared workspace by testing the effectiveness of a light-

based signal using an LED strip around the end effector
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combined with an emotional display to show the robot’s

collision avoidance intent.

As described in Section II, there is a significant deficit in

research on the use of emotional displays for robots in shared

workspaces between humans and robots. Although previous

studies have explored nonverbal cues, such as gaze behaviour

and light-based signals, to improve communication in shared

workspaces, the potential of emotional displays to enhance

human-robot collaboration remains largely unexplored. Emo-

tional displays could provide a more intuitive and natural way

for robots to communicate their intentions, improving human

comfort and efficiency in collaborative environments.

The experiment design, described in Section III, involves

human participants working alongside a robot to perform

a block assembly task. The setup mimics the scenarios

of a shared workspace in the real world. To assess the

effectiveness of light-based signals and emotional displays

to convey the robot’s collision avoidance intent, we evaluate

three distinct conditions. The first condition involves only

LED signals, the second condition combines LED signals

with reactive emotional displays, and the third condition

incorporates preemptive emotional displays alongside LED

signals. The results (described in Section IV) show that

emotional displays significantly increase perceived robot

interactivity compared to LED signals alone (p = 0.019), but

do not affect collision anticipation, clarity, or efficiency. Our

findings have implications for designing multimodal cues

and adaptive intent prediction for intuitive cobots, to bridge

the gap between engagement and performance in shared

workspaces.

II. RELATED WORK

Light-based signals have emerged as a robust method

for conveying robot intent in collaborative environments.

Lemasurier et al. [5] investigated visual cues, including LED

bracelets, gaze, arm light, head pan, forearm movement, and

gripper movement. Their findings highlight the effectiveness

of LED bracelets in signalling motion intent, demonstrating

high noticeability and minimal confusion for human collab-

orators compared to other signals. Similarly, Cha et al. [6]

categorise visual signalling methods, such as blinker lights

and ambient light signals, as effective in conveying a robot’s

navigational intent, with applications in autonomous vehicles

and hallway navigation [6], [7]. However, these signals

are often designed for independent robot movement rather

than collaborative tasks, and they may lack the emotional

context needed to enhance user engagement, prompting the

exploration of complementary modalities.

Beyond LED-based approaches, light projection and aug-

mented reality (AR) have been explored for intent communi-

cation. Chadalavada et al. [8] demonstrated that projecting a

robot’s intended path onto the environment improves human

anticipation of robot movements in shared spaces. However,

projection-based methods are limited by their reliance on

flat surfaces and susceptibility to occlusion, making them

less effective for complex 3D movements, such as those

of a robotic arm [9]. As explored by Walker et al. [10],

AR-based signalling uses virtual cues such as arrows or

gaze to guide human attention, improving task coordination.

Despite their potential, AR systems require users to wear

specialised equipment, which may not be practical in dy-

namic workspaces and poses safety risks if the equipment is

unavailable [10]. These limitations underscore the need for

scalable and intuitive visual signalling methods, such as our

study’s proposed LED and emotional display system.

Emotional displays offer a promising avenue for making

HRI more intuitive. Yang et al. [11] explored nonverbal

emotional expressions (e.g. happy or angry faces) in a tic-

tac-toe game with humans, reporting a 20% increase in task

efficiency and a 30% reduction in errors when emotional cues

were used. While their work highlights the potential of emo-

tional signals to improve collaboration, it focuses on interac-

tive tasks with the robot rather than shared workspaces. Our

study addresses this gap by integrating emotional displays

with a collaborative robotic arm in a dynamic, collision-

prone environment. Using a tablet-based facial interface,

our approach mimics human-like expressiveness, aiming to

enhance safety and engagement. Furthermore, studies like

those by Breazeal [12] emphasise that emotional displays can

foster trust and predictability in HRI. Still their application

in industrial settings remains underexplored, motivating our

focus on collision avoidance in shared workspaces.

Motion-based signals, which involve physical movements

to convey intent, have also been studied for their robustness

in varying environmental conditions. Dragan et al. [13]

developed cost functions to optimise robot motion for leg-

ibility, ensuring movements are intuitive and aligned with

human expectations. Anticipatory motions, such as slight

arm adjustments before a task, improve human understanding

of the robot’s intent [13]. Furthermore, Szafir et al. [14]

explored whole-body movements and gestures in assistive

robots, establishing guidelines for expressive motion across

platforms. Unlike visual signals, motion-based cues do not

rely on external lighting or equipment, making them suitable

for diverse settings. However, their effectiveness in close-

proximity collaboration remains less studied, and they risk

being perceived as threatening if not carefully designed [14].

Our study complements these findings by focusing on visual

and emotional signals, which may be less intrusive in shared

workspaces.

Broader frameworks for intent communication provide ad-

ditional context for our work. Pascher et al. [15] proposed a

model that classifies robot intent into motion, attention, state,

and instruction types, highlighting the role of spatial and

temporal clarity in HRI. Their framework informs our dual-

modality approach, which combines LED signals for motion

intent with emotional displays to communicate the robot’s

reaction to the human. This integration aims to enhance both

transparency and participation in human-robot collaboration.

Other nonverbal cues, such as gaze behaviours [16], [17],

have been extensively studied for intent prediction but face

practical challenges, including hardware complexity and cal-

ibration problems. In contrast, our emotional display and

LED system offer a scalable and visually intuitive solution.



Building on previous work, this study advances HRI by

evaluating a novel combination of light and emotional signals

for conveying collision avoidance intent of a collaborative

robot.

III. METHODOLOGY

This section describes the experimental framework used

to evaluate the efficacy of nonverbal communication in HRI

within shared workspaces. We used a within subjects exper-

iment design that involved a collaborative block assembly

task with a Franka Emika Panda robot equipped with an LED

strip and a tablet-based emotional display. We tested three

experimental conditions: LED signals alone, LED signals

with reactive emotional displays, and LED signals with

pre-emptive emotional displays. We collect data through

questionnaires and position tracking to assess collision an-

ticipation, clarity of communication, and performance of the

task.

A. Research Question and Hypothesis

The primary research question guiding this study is: How

do emotional displays combined with LED signals affect

human behaviour and perception in human-robot collabo-

ration compared to LED signals alone? This question aims

to determine whether the integration of emotional displays

improves the intuitiveness and safety of HRI in shared

workspaces, particularly by conveying the intent of the robot

to avoid collisions, ie stopping or continuing when a human

hand is detected in the robot’s path.

To address this question, the following hypotheses were

formulated:

1) H1: Emotional displays combined with LED signals

will increase participants’ anticipation of potential col-

lisions with the robot compared to LED signals alone.

2) H2: Emotional displays combined with LED signals

will increase the ability of the robot to express its intent

clearly to humans when working in a shared workspace

compared to LED signals alone.

3) H3: Emotional displays combined with LED signals

will improve human perception compared to LED

signals alone.

4) H4: Emotional displays combined with LED signals

will affect human behaviour, as evidenced by changes

in collision rates and task execution time, compared to

LED signals alone.

B. Experiment Design

In our experiment, participants performed a collaborative

assembly task with the robot. The experiment setup is shown

in Figure 4. The task involved the following steps for the

participants:

1) Take a red block from the container and place it in the

assembly space.

2) Take a ‘double’ block from the drop-off container and

insert it on top of the red block in the assembly space.

3) Place the assembled blocks in the finished assembly

container.

4) Tick the corresponding box on the provided sheet and

write the colour of the assembled top block.

5) Repeat steps 1-4 until no red blocks are left in the

container.

The robot transferred individual double blocks from the

pickup area and put them in the drop-off container. During

movement between the pick-up and drop-off zones, the

robot operated in two distinct modes: yielding mode and

unyielding mode. In yield mode, the robot stopped if a

human hand entered its path and continued to move towards

its target only after the hand moved out of its path. In

unyielding mode, the robot continued its motion towards its

target without stopping, even if a human hand was detected in

its path. The mode was set before the start of each movement

between the pick-up and drop-off zone. The robot exhibited

nonverbal signals to communicate its mode to the human.

In our experiment, we evaluated three nonverbal signal

conditions. Condition 1 is a baseline with only LED signals.

The LED signal has 2 modes: red and green, as shown in

Figure 2. The red signal corresponds to the non-yielding

mode, i.e. the robot will not stop even if the human’s hand is

in the robot’s path, and the green signal corresponds to the

yielding mode, i.e. the robot will stop if the human’s hand

is in the robot’s path. The signal changes before the robot

starts its movement between the pick-up and drop-off zones

and remains constant throughout the movement.

(a) (b)

Fig. 2. The two modes of the LED strip used in our experiment. (a)
Green LED signal (yielding mode) means that the robot will stop if the
participant’s hand is in the robot’s path. (b) Red LED signal (unyielding
mode) means that the robot will not stop even if the participant’s hand is
in the path

Condition 2 consists of the same LED signals as Condition

1, combined with a reactive emotional display. The default

state of the robot’s face is neutral with a grey background,

as shown in Figure 3 (a). When there is a potential collision

while the LED is green (yielding mode), the face changes

to a watchful expression and the background turns green,

as shown in Figure 3 (b). This indicates that the robot is



attentive and that it is safe to move in the robot’s path, as the

robot will slow down and stop. After a couple of seconds, the

face returns to its default state. If there is a potential collision

while the LED is red (unyielding mode), the face instead

changes to an angry expression and the background turns red,

as shown in Figure 3 (c). This indicates that the robot is angry

that the human hand is in its way and that it will not stop.

After a couple of seconds, the background and expression

return to their default grey and neutral appearance.

Condition 3 consists of the same LED signals as Condition

1 combined with a pre-emptive emotional display. The

display background color changes to match the colour of

the LED before the robot begins its movement. The facial

expression, with a neutral expression as the default, changes

similarly to Condition 2 but without altering the background

colour.

(a) (b) (c)

Fig. 3. The robot’s facial expressions used in our experiment. (a) Neutral
expression with a grey background. (b) Watchful expression with green
background. (c) Angry expression with red background.

The experiment followed a within-subjects design, with

each participant experiencing the three conditions. To min-

imise order effects, the presentation order of the condi-

tions was randomised and counterbalanced. Before the main

rounds, the participants performed a practice round to help

get familiar with the setup, and this round included LED

signals only.

C. Components

1) Robot: We used a Franka-Emika Panda robot,

equipped with a joint impedance controller for safe interac-

tion. If the human collided with the robot, the robot would

not apply excessive force. However, we did not observe any

collisions in our experiment. We used a time-scaled trajectory

generator to implement the yielding mode by reducing the

robot’s speed to zero if the human hand was detected in the

robot’s path. We added an LED strip on the end effector to

signal the robot’s collision avoidance intent, i.e. yielding or

unyielding mode.

2) Emotional Display: We used a Samsung S6 tablet

as the robot’s head to display animated facial expressions

(neutral, watchful, angry) and background colours (grey,

green, red) with a web-based interface. Based on feedback

from our pilot trials, we mounted the tablet head on the table

rather than at a higher, human-like position. At the higher

placement, the head was outside the human’s main visual

field when they performed the assembly task.

3) Tracking System: We used an OptiTrack motion track-

ing system with six cameras to track participants’ hand

positions using reflective markers on a glove.

4) Integration: We used an Arduino Uno R4 WiFi board

to control the LED strip. All components were integrated

using the Robot Operating System (ROS).

D. Experiment Procedures

Fig. 4. Top view of the experiment setup. The robot picks up blocks from
the ªPick-upº area and puts them in the ªDrop-offº area. The participant has
to pick blocks from the ªRed Containerº and ªDrop-offº areas, assemble
them in the ªAssembly Spaceº area, place the finished assembly in the
ªFinished Assemblyº area, tick the box on the sheet next to that area, and
write the color of the assembled top block on the sheet.

Upon arrival, participants were first asked to read and

sign the consent form if they agreed to participate in the

study. Following their consent, they were instructed to read

the experiment instructions. The instructions outlined the

experimental task. Importantly, the instructions described the

functioning of the LED signals. This approach ensured con-

sistency among all participants and minimised the variability

that could arise from verbal explanations, thereby controlling

for potential confounding variables. The participants were

instructed to use only one hand to assemble the blocks and

mark the provided sheet so that the OptiTrack system could

track the hand’s position. They wore gloves with reflective

markers on their hand throughout the experiment.

The participants were instructed to perform the assembly

task, described in Section III-B, for 10 blocks as quickly as

possible in each round. This was stated to simulate a real-

world collaborative scenario where efficiency is prioritised.

The participants’ focus on completing the task as quickly

as possible created a realistic environment to test whether

they could notice the robot’s emotion display and interpret

its signals while working under time pressure.

E. Data Collection

We collected the participants’ self-reported gender, age

group, and familiarity with the robot. We used an individual

identification code generated by participants to store their

data anonymously. After completion of a round, participants

were asked to answer a questionnaire, shown in Table I

below, about their experience. The responses to the questions

were on a Likert scale from 1 to 9, with 1 being ªStrongly

disagreeº and 9 being ªStrongly agreeº. Once all rounds

were completed, participants were asked to answer four final

questions: Q1 – In which round did the behaviour of the robot



make you feel the most disturbed?; Q2 – In which round the

robot’s intent is most understandable to you?; Q3 – In which

round did you feel most uncomfortable with the robot?; Q4

– Do you have anything else to say?

TABLE I

QUESTIONNAIRE GIVEN TO THE PARTICIPANTS AFTER EVERY ROUND

Question 1: ANTICIPATION OF DANGER

ªI was able to anticipate potential collisions with the robotº

Strongly
disagree

1 2 3 4 5 6 7 8 9
Strongly

agree

Question 2: INTENT COMMUNICATION

ªThe robot communicated its intent clearlyº

Strongly
disagree

1 2 3 4 5 6 7 8 9
Strongly

agree

Question 3: PERCEIVED COMPETENCE

Using the scales provided, how closely are the
words associated with your impression of the robot?

Strongly
disagree

Knowledgeable Strongly
agree1 2 3 4 5 6 7 8 9

Strongly
disagree

Interactive Strongly
agree1 2 3 4 5 6 7 8 9

Strongly
disagree

Responsive Strongly
agree1 2 3 4 5 6 7 8 9

Strongly
disagree

Capable Strongly
agree1 2 3 4 5 6 7 8 9

Strongly
disagree

Competent Strongly
agree1 2 3 4 5 6 7 8 9

Strongly
disagree

Reliable Strongly
agree1 2 3 4 5 6 7 8 9

F. Participants

A total of 27 participants participated in the study. Data

from 9 of them had to be excluded due to software mal-

functions, which led to issues such as the LED or the tablet

not functioning properly or experiencing connectivity issues.

The final sample of 18 participants had 16 males and 2

females. 12 of the participants were in the 21-29 age group.

Before starting the experiment, the participants reported their

familiarity with the robot on a Likert scale ranging from

1-9, 1 being ªNot familiar at allº and 9 being ªExtremely

familiarº. Six participants reported 5 or less for familiarity

with the robot, unlike the remaining 12, who were more

familiar, reporting 6 or more.

IV. RESULTS

This section presents the findings from our human-robot

collaboration experiment, evaluating the impact of LED

signals and emotional displays on human behaviour and

perception. The results are organized to address the four

hypotheses: H1 Ð emotional displays with LED signals

increase collision anticipation; H2 Ðemotional displays with

LED signals increase robot intent communication clarity; H3

Ð emotional displays with LED signals improve perceived

robot competence; and H4 Ð emotional displays with LED

signals alter human behavior compared to LED signals alone.

To ensure the reliability of the questionnaire responses,

we calculated McDonald’s Omega (ω) to assess internal

consistency. ω values range from 0 to 1, where the values

≥ 0.9 indicate excellent reliability, 0.8−0.9 indicate good re-

liability, 0.7−0.8 reflect acceptable reliability and the values

< 0.7 suggest poor reliability. We conducted a Shapiro-Wilk

normality test to assess whether the data followed a normal

distribution. If the data followed a normal distribution, re-

peated measures ANOVA tests were used for comparisons,

along with Bonferroni post-hoc tests for multiple compar-

isons when ANOVA was statistically significant. In cases

where the data did not follow a normal distribution, Fried-

man’s ANOVA tests were conducted, followed by Wilcoxon

signed-rank tests to pinpoint the group(s) responsible for

any significant findings. For repeated measures ANOVA, we

performed Mauchly’s test of sphericity to assess whether the

assumption of sphericity was met. If the test was statistically

significant (p< 0.05), indicating the assumption of sphericity

had been violated, the Greenhouse-Geisser correction was

applied.

A. Questionnaire Data Analysis

Questionnaire after each round (see Table I) assessed

participant perceptions of collision anticipation, communi-

cation clarity, and robot competence. McDonald’s Omega

(ω)) confirmed internal consistency: ω = 0.879 (Condition

1), 0.935 (Condition 2), and 0.954 (Condition 3), indicating

good to excellent reliability.

1) Collision Anticipation: Participants rated the state-

ment ªI was able to anticipate potential collisions with

the robotº on a Likert-type scale with values ranging

from 0 to 9. Shapiro-Wilk tests showed non-normal data

(p < 0.05). Friedman’s ANOVA revealed no significant

differences across conditions (p = 0.717), with means of

6.722± 2.445 (Condition 1), 6.833± 1.917 (Condition 2),

and 6.611 ± 2.173 (Condition 3) as shown in Figure 5.

Thus, H1 is not supported; that is, emotional displays did

not significantly enhance collision anticipation beyond LED

signals alone.

Fig. 5. Mean scores and standard errors for anticipation of potential
collision across the 3 conditions, showing no significant difference

2) Communication Clarity: Participants rated the state-

ment ªThe robot communicated its intent clearlyº on a

Likert-type scale with values ranging from 0 to 9. Shapiro-

Wilk tests indicated non-normality for Conditions 2 and 3

(p< 0.05). Friedman’s ANOVA did not show a significant ef-

fect (p = 0.175), with means of 5.667±2.544 (Condition 1),

7.056± 2.155 (Condition 2), and 6.778± 2.290 (Condition



3) as shown in Figure 6. Thus, H2 is not supported; that is,

emotional displays did not significantly improve the robot’s

intent communication clarity beyond LED signals alone.

Fig. 6. Mean scores and standard errors for robot communication intent
across the three conditions, showing no significant difference

3) Perceived Competence: We collected participants’ im-

pressions of the robot in terms of six characteristics (Knowl-

edgeable, Interactive, Responsive, Capable, Competent, and

Reliable). Figure 7 shows the means and standard errors

of the responses. As shown in Table II, Shapiro-Wilk

tests showed mixed normality. For ªInteractiveº, Friedman’s

ANOVA was significant (p = 0.019), with Condition 2

(6.389 ± 1.883) higher than Condition 1 (4.778 ± 1.987),

shown by Wilcoxon tests (p < 0.05). Other items (e.g.,

ªCompetentº: 5.778± 1.865, 6.722± 1.674, 6.333± 1.782)

showed no significance (p > 0.05). Thus, H3 is partially

supported, that is, emotional displays enhanced perceived

interactivity but not overall competence beyond LED signals

alone.

TABLE II

TESTING THE SIGNIFICANCE IN PARTICIPANTS’ ANSWERS ACROSS THE

THREE CONDITIONS

Conditions 1 2 3 P-value

ANOVAMean

± SD

Mean

± SD

Mean

± SD

Knowledgeable
5.944

± 2.127
6.00

± 1.680
6.056

± 1.955

Repeated
Measures

0.971

Interactive
4.778

± 1.987a
6.389

± 1.883b

6.056

± 1.955ab

Repeated
Measures

0.019*

Responsive
5.444

± 2.175
6.500

± 1.978
6.389

± 1.914
Friedman’s

0.056

Capable
6.667

± 1.414
7.111

± 1.491
7.00

± 1.609
Friedman’s

0.390

Competent
5.778

± 1.865
6.722

± 1.674
6.333

± 1.782
Friedman’s

0.205

Reliable
6.389

± 2.304
6.611

± 2.146
6.00

± 2.544
Friedman’s

0.292

*Statistically significant p < 0.05.
a,b : denote statistically significant differences between Condition 1 and
Condition 2 within the same row

4) Comfort and Intent Perception: We asked the par-

ticipants three questions at the end of the experiment to

identify the condition in which the robot’s intent was most

clear, they felt the most comfortable, and they felt the

Fig. 7. Means and standard errors for human-perceived competence of the
robot showing that the robot was significantly more responsive in condition
2 than in condition 1

most uncomfortable. The results are visualised in Figures 8,

adjusted for the different order of conditions such that each

round number represents the corresponding signal condition.

Chi-square tests on these post-experiment questions showed

no significant differences (p > 0.05), suggesting consistent

perceptions across conditions.

5) Open-ended Question: The participants’ responses to

the open-ended question at the end of the experiment (Q4 –

Do you have anything else to say?) highlighted diverse par-

ticipant experiences with the robot’s behaviour and adaptabil-

ity. Some participants found the robot’s actions predictable

and consistent, with comments such as, ªConsistent. The be-

haviour is predictable, and it’s easy to work around it.º Some

participants reported being highly focused on the task, with

one noting, ªI was very concentrated on the task, but the face

of the robot made me more cautious about its movements.º

Others admitted to paying minimal attention to the robot,

with one stating, ªI barely paid attention to it and stayed

within a region where I knew I would not collide.º Visual

cues played a significant role in shaping these perceptions,

with some participants pointing out challenges, such as, ªI

noticed the missing colour on the tablet, which made it

harder to understand what the robot would do.º These mixed

responses suggest variability in how participants interpreted

and interacted with the system. The graphical user interface

(GUI) and interactive elements received positive feedback for

improving user understanding and anticipation. Participants

appreciated features like the robot’s waiting behaviour, with

one stating, ªGUI helps me a lot to understand the robot’s

behaviour. When it was its turn, it waited for me as much

as I wanted, which is great.º Similarly, the animations were

praised for their effectiveness, as highlighted in the comment,

ªThe interactive display with animations was super helpful

and made a big difference in my anticipation of the robot.º

Overall, feedback underscores the importance of clear and

consistent visual communication in human-robot interaction,

and how it should be explored further, as well as the need

for further testing to enhance perceived adaptability and user

experience.



(a) Percentage of participants reporting clear
robot intent across rounds

(b) Percentage of participants reporting most
comfortable round

(c) Percentage of participants reporting the
most uncomfortable round

Fig. 8. Chi-square goodness of fit test to examine if there is significance in proportions of participants’ perception of robot intent and comfort levels
across conditions

B. Position Tracking Analysis

Position tracking data was collected per participant in

three conditions. The variables included the time spent in

each round, 3d positions of the robot’s end effector and

participant’s hand, the distance between them, and the LED

colour (green or red).

1) Collision Avoidance Behavior: We calculated the time

spent by the human hand in the robot’s movement path in

each condition, for the yielding and unyielding modes. If

the participants were prone to avoiding potential collisions

in conditions with emotional displays, the time spent by them

in the robot’s movement path would be lower in Conditions

2 and 3 as compared to Condition 1. For the unyielding

mode (Red LED), the means and standard deviations were:

506.833± 289.458ms (Condition 1), 682.944± 223.332ms

(Condition 2), and 580.389 ± 245.268ms (Condition 3).

Shapiro-Wilk tests indicated non-normality (p < 0.05), so

Friedman’s ANOVA was applied, showing a non-significant

result (p = 0.128). For the yielding mode, the means and

standard deviations were: 1007.50± 448.094ms (Condition

1), 879.278 ± 528.620ms (Condition 2), and 933.944 ±

406.844ms (Condition 3), also non-normal (p < 0.05), with

Friedman’s ANOVA not showing any significance (p =

0.179).

We calculated the average distance between the partici-

pant’s hand and the robot’s end effector in each condition. If

the participants were prone to avoiding potential collisions

in conditions with emotional displays, the average distance

between their hand and the robot’s end effector would be

higher in conditions 2 and 3 as compared to Condition 1. The

means and standard deviations of the average distance were:

0.576± 0.041m (Condition 1), 0.560± 0.030m (Condition

2), and 0.569 ± 0.048m (Condition 3). Shapiro-Wilk tests

confirmed normality (Condition 1: W = 0.916, p = 0.110;

Condition 2: W = 0.988, p = 0.996; Condition 3: W =

0.969, p = 0.783), and Mauchly’s test showed no sphericity

violation (p = 0.704). Repeated Measures ANOVA did not

indicate a significant effect (p = 0.461). Thus, there was no

significant difference between the conditions in terms of the

participants’ collision avoidance behaviour.

2) Average Completion Duration: We calculated the du-

ration of task completion for each condition to test the effect

of emotional displays on the efficiency of the participants.

The means and standard deviations of the task execution

time were: 110.8±14.3s (Condition 1), 114.7±16.0s (Con-

dition 2), and 113.1 ± 15.2s (Condition 3). Shapiro-Wilk

tests confirmed normality (Condition 1: W = 0.989, p =

0.998; Condition 2: W = 0.977, p = 0.920; Condition 3:

W = 0.978, p = 0.926), and Mauchly’s test indicated no

sphericity violation (p= 0.518). Repeated Measures ANOVA

did not indicate a significant effect (p= 0.175). These results

show that emotional display did not affect the participants’

efficiency in terms of the task completion duration.

V. DISCUSSION

We investigated the impact of nonverbal communication

techniques on human-robot collaboration, focusing on LED

signals and emotional displays. The results suggest that,

while emotional displays enhance the perceived interactivity

of the robot, they do not significantly improve collision

anticipation or communication clarity beyond what LED sig-

nals provide. Furthermore, while participants responded pos-

itively to emotional displays in their open-ended responses,

their overall task performance and perception of safety

did not change significantly. These findings indicate that,

while emotional displays can be beneficial for engagement,

their role in practical shared workspaces remains limited

without further refinement, additional sensory feedback, or

multimodal cues.

This study was limited to 18 participants, primarily from

an academic setting. In addition, the experiment was con-

ducted in a confined space. Future experiments could expand

to a larger set of participants: industrial workers, engineers,

various age groups, and individuals with varying levels of

robotics experience and a larger space with a mobile manip-

ulator, to better assess the generalizability of the findings.

Furthermore, to improve and refine nonverbal communica-

tion in human-robot collaboration, several research directions

could be explored. Future work could investigate multimodal

communication by integrating gaze cues along with LED

signals and facial expressions. Gaze-based intent signalling,



for example, has been shown to improve predictability in

HRI [18] and could complement the existing emotional

display system. The current system uses predefined reactions

to human movement, but a real-time adaptive system could

significantly enhance responsiveness. Using machine learn-

ing or reinforcement learning, the robot could dynamically

adjust its communication strategy based on the behaviour

of the participant, providing more personalised and effective

feedback. In addition, human adaptation to robot behaviour

may evolve. A longitudinal study examining how participants

respond to nonverbal cues over multiple sessions or weeks

would provide deeper insights into whether emotional dis-

plays improve efficiency and trust in the long run.
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