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Figure 1. We present LIMO: a spatiotemporal lighting estimation method with accurate spatial grounding, full HDR and realistic reflections.
LIMO accurately grounds virtual objects over different spatial positions (1* and 2" left), and over time (3™ left). LIMO can readily be used
in virtual production (right), for instance by inserting actors captured in light domes in real sets.

Abstract

We present Lighting in Motion (LIMO), a diffusion-based ap-
proach to spatiotemporal lighting estimation. LIMO targets
both realistic high-frequency detail prediction and accurate
illuminance estimation. To account for both, we propose
generating a set of mirrored and diffuse spheres at different
exposures, based on their 3D positions in the input. Making
use of diffusion priors, we fine-tune powerful existing diffu-
sion models on a large-scale customized dataset of indoor
and outdoor scenes, paired with spatiotemporal light probes.
For accurate spatial conditioning, we demonstrate that depth
alone is insufficient and we introduce a new geometric con-
dition to provide the relative position of the scene to the
target 3D position. Finally, we combine diffuse and mirror
predictions at different exposures into a single HDRI map
leveraging differentiable rendering. We thoroughly evaluate
our method and design choices to establish LIMO as state-
of-the-art for both spatial control and prediction accuracy.

1. Introduction

Humans have the inherent ability to determine whether a
virtual object inserted into an image belongs in the scene
or not [14, 38]. When an object’s shading does not har-
monize well with its surroundings, it creates a “pasted-in”
effect where the object appears out of place, breaking real-
ism [32]. Whether the task is to composite an actor into an
environment or add an object to an image sequence, having
access to accurate lighting information is critical. Capturing
lighting has long been the default solution [9], notably by
inserting light probes—typically, mirror and diffuse spheres
reflecting the incoming light rays towards the camera—in the
scene and capturing them using high dynamic range (HDR)
photography [11]. However, this process requires physical
access to the location, the proper equipment to capture HDR
images, and time. Hence, the ability for computers to auto-
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matically estimate lighting given an image, or a sequence

of images, has potential impact for virtual and augmented

reality, filmmaking, and design.

We assert that a generally applicable lighting estimation
technique should have the five following capabilities:

1. It should allow for “grounding” its prediction in a specific
location in the scene, since lighting varies spatially as a
function of the relative position to the light sources and
occlusions [15]

2. It should adapt to temporal variations: a moving camera
revealing unseen light sources, moving objects causing
occlusions, or changing lighting conditions

3. It must predict accurate HDR luminance values, includ-
ing for large areas of indirect light reflecting from ob-
jects in the scene as well as for concentrated, orders-of-
magnitude brighter light sources

4. It should be able to estimate near-field light sources in-
doors as well as distant environmental light outside

5. It should estimate plausible lighting distributions in-
cluding high-frequency environmental detail and low-
frequency directional illuminance, even though estimat-
ing such information is typically under-constrained
Previous methods focused on subsets of these specifica-

tions to break the problem into pieces. For example, methods
proposed to estimate a single global lighting estimate from
images [15, 23, 30] or videos [28]. Others predict spatially-
varying lighting but are targeted for indoors [25, 35] or out-
doors [50]. Recent works deal with spatiotemporal varia-
tions [26, 41], but we find they struggle in properly ground-
ing the predictions within the local context of the scene.

In this paper, we present what we believe to be the first
approach to address all five capabilities in a single frame-
work. Our approach provides lighting predictions that can be
grounded at a specific 3D position, vary through time, pre-
dict accurate HDR values, works both indoors and outdoors,
and generates realistic details for reflections.

Our method, dubbed Lighting in Motion (LIMO), works
as follows: given a monocular image/video and a sequence
of positions in the scene, we first use an off-the-shelf pre-
dictor [5] to recover per-pixel depth. Using the depth and
lighting estimation positions we compute a set of geomet-
ric maps that are used to condition a diffusion model. The
network, specifically fine-tuned for the task, outputs either a
mirror or diffuse sphere at the desired locations, and at a spe-
cific exposure value. By querying the network for multiple
combinations of mirror/diffuse spheres and exposure values,
we obtain a stack of exposure brackets for both the diffuse
and mirror spheres at each position. These outputs are sub-
sequently fused for each position into a single HDRI, which
are combined into a sequence. To evaluate the method, we
present a novel video lighting estimation test dataset made
from realistic synthetic data.

Our work makes the following contributions:

* L1Mo, a diffusion-based method to predict full HDR
lighting at any 3D point in a scene, and at any time in a
video.

* New geometric maps to condition the diffusion-based
generator, which we demonstrate are critical for accu-
rate spatially-varying predictions.

* A mirror and diffuse multi-bracket approach to light-
ing estimation which provides both realistic and more
physically accurate estimation.

2. Related work

Image-based lighting (IBL)

Classic Image-Based Lighting photographs light probes,
typically mirror and diffuse spheres [9, 33], to construct
HDRI maps and render realistic virtual objects. Hardware
and physical constraints prohibit the use of such techniques
if physical access to the scene is impossible, and as such,
methods for estimating lighting from images have been pro-
posed.

Single image lighting estimation

Early approaches estimated environment lighting from
images using cues such as reflections, shadows, and ge-
ometry [22, 34]. Of course, learning-based methods out-
performed their predecessors by proposing approaches that
directly regress HDR lighting representations from single im-
ages of indoor scenes [15, 16, 46], outdoor scenes [20, 47],
or both [6, 8, 23, 30], or a scene with a human face [24].
The interested reader is invited to consult the survey of Ein-
abadi et al. [13] for more details. The aforementioned ap-
proaches typically estimate lighting either at the center of
the image or at a single point in the scene.
Spatially-varying lighting estimation

Since lighting can vary drastically across the field of view,
some methods accept a specific location as input, and predict
the lighting at that point as an HDRI map [1, 35] or spherical
harmonics [17]. Other methods predict a dense lighting
representation, for example at each pixel location in a 2D
grid of spherical gaussians [25, 49] or as a volumetric, either
using a voxel grid of spherical gaussians [44], or an implicit
representation [36]. Other spatially-varying approaches have
been proposed for outdoor scenes [39, 50].
Spatiotemporal lighting estimation

Lighting can also change over time: flipping a light
switch, or panning the camera to a bright window, create
drastic changes in lighting that can be estimated by con-
structing a spatiotemporal volume [26]. Concurrent to this
work, LuxDiT [28] predict temporally-varying HDRI maps.
Finally, and most closely related to our work, Tong et al. [41]
adapt a diffusion model for generating multiple spheres
across the field of view, and subsequently build a unique
implicit representation over the video through a NeRF-like
approach. However, as we will demonstrate, it tends to
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Figure 2. Overview of LIMO, our proposed diffusion-based spatiotemporal lighting estimation method. From an input image (or video
sequence) and a 3D scene point, we first obtain an estimate of the per-pixel depth (1, top). From this, a set of condition maps are computed
(1, bottom). These maps, along with a text prompt, are used to condition a diffusion model (2) which is trained to inpaint a sphere at the
desired 3D scene point. The model learns to predict spheres at different exposures and materials (metallic or diffuse). The predicted spheres
are merged into a single HDRI map (3) through a differentiable rendering approach.

generate results that are overly smooth and do not properly
capture the dynamics of lighting.
Diffusion-based rendering

It has been recently shown that virtual object insertion
can be performed as a learning task, through diffusion-based
rendering [27, 45, 48] or harmonization [4, 19], bypassing
the need for acquiring or estimating an HDR map. While
these approaches offer a promising new paradigm for image
compositing, they lack the artistic control offered by the
traditional IBL pipeline. Here, we focus on explicit HDR
lighting recovery in the form of HDRI maps, as they can
readily be used in existing, production-ready object com-
positing frameworks.

3. Method

We present LIMO, which adapts image and video generative
models to predict spatially-varying HDR illumination in a
single image, or a video sequence.

3.1. General approach

Our approach consists of using priors from a diffusion model
to inpaint a diffuse or mirror sphere at a specific 3D position
in space, and at a given exposure value. At test time, the
model is run multiple times to generate both diffuse and
mirror spheres at multiple exposures, and predictions are
subsequently merged to a single HDRI.

Contrary to some recent work [6, 30] that only rely on
mirror spheres, we argue that accurate HDR lighting estima-

tion is greatly facilitated by using diffuse spheres. Mirror
spheres are a great way to obtain plausible reflections but
the estimation of luminance values for concentrated light
sources relies on a very small number of pixels and requires
many exposure values [37]. With a diffuse sphere, the en-
ergy of concentrated light sources is integrated to moderate
exposure levels by the diffuse surface and becomes easier
to estimate accurately from fewer exposure levels [10]. Fig-
ure 2 shows an overview of our proposed method. Next, we
elaborate on how we condition the diffusion model (Sec. 3.2),
the dataset used for fine-tuning it (Sec. 3.3), and the HDRI
reconstruction at test time (Sec. 3.4).

3.2. Model conditioning

We fine-tune a diffusion model, conditioning it on an input
image or video, additional maps, and text. For clarity, we
describe what is done for single images, but our approach
handles videos by using a video model or applying the image
model independently on each image sequentially.
RGB and geometry conditioning To allow accurate light-
ing estimation, we curate multiple input maps used as condi-
tioning to the diffusion model. These input maps are channel-
wise concatenated to the input noise and the first layer of the
model is expanded to accommodate these extra channels.
First, we provide the RGB image as input /,4,. The region
corresponding to the sphere to inpaint is set to black to pre-
vent the background from spilling into the sphere. Second,
we provide the depth of the background image I, estimated



from an off-the-shelf depth predictor [5], with the depth of
the sphere to inpaint.

As we will later demonstrate (see Sec. 4.5), we found that
providing only the depth of the scene and sphere, as in [41],
is insufficient for accurately grounding the light prediction
at a specific 3D point in the scene. We therefore provide
three additional maps: a normal map of the sphere I, and
two novel maps capturing the geometric relations, providing
context between the scene and the sphere.

Those geometric maps relate the scene’s surfaces to the
sphere’s position: for a given pixel ¢ in the image, we de-
fine the direction Iy ; and distance lgis, ; from the 3D point
corresponding to ¢ to the sphere as

. _
Pi if not on sphere,

I = ¢ Pl ()
v; — 2(v; -n;)n;, if on sphere,

and
Liisii = ||lpi — cil| - 2)

Here, p; are the (z,y, z) pixel world coordinates, computed
from the pixel depth and view direction vector v; obtained
using the estimated camera field of view from an off-the-
shelf method [43], and c is the coordinates of the sphere
center. For pixels on the sphere, we use the reflected in-
coming ray direction, computed using n;, the sphere surface
normal and v;. Intuitively, this map allows the model to
match the reflected direction at a given pixel on the sphere
and points in the scene that are in the same direction from
the sphere center. These geometric quantities are expressed
in the camera coordinate system.

The image I.4, is assumed to be in SRGB color space,
and both the depth map I; and distance to sphere map I
are log-normalized. All maps {Igp, In, 14, Lair, Laisc} are in-
dividually encoded to latent space using the pre-trained VAE
encoder, and subsequently channel-wise concatenated. To al-
low more channels, the patch embedding convolution of the
denoising network is adapted by copying and dividing the
initial pre-trained weights by the number of added channels.

At training time, the ground truth per-pixel depth I; and

camera field of view are used to compute the maps. At test
time, we rely on pre-trained estimators (Chen et al. [5] for
depth and Wang et al. [43] for field of view).
Exposure conditioning  Similar to Bolduc et al. [3], we
train the model to accept an exposure value (EV) as text
prompt, given to the network using the pre-trained text en-
coder. Contrary to methods which interpolate between 2
extreme exposures [30, 41], we found that giving a discrete
number of EVs is effective for accurate EV predictions. In
practice, we set EVs to {0, —3, —6, —9, —12}. During train-
ing, the corresponding EV image sphere is given as target,
keeping regions outside the sphere at the original EV0.

Multi-sphere predictions An additional text prompt is
given to condition on which sphere to inpaint (mirror or
diffuse). Including both the type of sphere and the exposure
value, the final text prompt has the form “{sphere type}
[EVvalue]” (e.g., “Diffuse sphere [EV0]”).
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Figure 3. Sample frames from the training dataset, illustrating the
three animation scenarios. In addition to the mirror spheres, the
diffuse spheres and the empty scene are also rendered (not shown).
Note that, while multiple spheres are rendered simultaneously for
more efficient data generation, at training and inference the network
regresses only one sphere at a time.

3.3. Dataset

To train our approach, physically acquiring a dataset of
ground truth HDR lighting moving in space in dynamic light-
ing would require a highly controllable environment. Instead,
we turn to synthetic scenes to generate sequences and their
associated ground truth illumination. We use Blender [7],
paired with BlenderKit [12] assets to procedurally generate
both indoor and outdoor renderings. More details on this
process are available in the supplementary materials.

To render a data sample, we randomly select a scene (in-
door or outdoor), select a random camera pose, and first
obtain a normal RGB rendering. We then generate training
targets by placing a grid of spheres in the scene, disabling
their visibility to both other spheres and the scene. They
are equally-spaced and sized in image space and of random
depth. Even though our training is done on a single sphere,
packing a sphere grid provides multiple data points per ren-
der and viewpoints, allowing for a random sphere selection
as training sample. Each sphere depth is computed using the
following factor :

0 = dmin + (dmax - dmin)ua7 3)



with dyin = 0.25, dpmax = 0.98, « = 0.4 and u ~ U(0,1).
To obtain the scene scale depth for each sphere, the sampled
depth factor is multiplied by the scene’s minimum depth
over the area of the sphere:

dsph = 6min(Id © Msph)a 4)

where 1 is the first render’s depth and My, is a binary
mask of the sphere’s footprint in image space. Finally, the
3D radius is computed according to the sampled depth and
camera’s field of view to allow fixed image space radius.

The sphere is rendered with two materials: perfect mirror
(roughness = 0, metallic = 1, albedo = (1,1,1) and perfect
diffuse (roughness = 1, metallic = 0, albedo = (1,1,1)). Im-
ages are rendered as float16 EXR, retaining the high dynamic
range. We also save the depth and sphere masks layers, along
with the intrinsic camera matrix and the sphere’s 3D position
and world radius. These extra layers enable the computation
of all our condition maps.

For video sequence data generation, the approach is
adapted to 3 scenarios, illustrated in Fig. 3.
Dynamic sphere position In this scenario the camera is
static and the spheres are moving. A random image space
offset (a/,y') is selected ' ~ U0, W),y ~ U(0,H),
where W and H are the image width and height respectively.
The spheres will move by this offset in image space over the
sequence. For depth, an additional factor is sampled for the
last frame and the 3D position and world size of the sphere
is interpolated through the sequence.
Dynamic camera We procedurally generate two camera
poses in the scene and interpolate between them. The abso-
lute distance to the sphere is interpolated between the first
and last frame with a fixed depth factor to insure smoothness
of movement.
Dynamic lighting The lighting is made dynamic by ran-
domly rotating the azimuth of the HDRI map, randomly
changing the scene’s light source intensities, and randomly
rotating the “Sun” light.

3.4. Equirectangular HDRI map optimization

At inference, the diffusion model is queried multiple times
to generate both mirrored and diffuse spheres at different ex-
posures. We obtain a final HDRI by merging the predictions.

For this, we define a rendering function R(L:, m),
which renders a sphere of material m € M, with M =
{mirror, diffuse}, under HDRI lighting ;. We then seek to
find

argminzz Z (m(e,m,t) — eR(Ly,m)) , (5)
L teT ee€ meM

where 7(e,m,t) is the fine-tuned generative model con-
ditioned on frame ¢, exposure e € &, where £ =
2{EVo,EV_3,..-} and material m, and ¢ is the loss function:

R A A A
= 0(Ge,y¢) + 5(51(%,%—1) + 0 (Je5 Y1) (6)

L is initialized at a constant gray value (0.5), and Adam is
used to optimize Eq. (5) through gradient descent, as we
employ differentiable rendering to implement R. The latter
is implemented in PyTorch as a two modes renderer: re-
flective and diffuse with cosine and light multi-importance
sampling. In practice, we randomly alternate between expo-
sures and materials at each iteration instead of summing over
all possibilities. To speedup convergence, we also employ a
Laplacian pyramid representation for L [18].

4. Experiments

4.1. Implementation details

We train two models: an image diffusion model and a video
diffusion model. We fine-tune the full image Flux.1 Schnell
model [21] for 150k steps using 12896 images at 512 x 512
resolution. For the video model, we use Wan2.2 5B [42]
model and fine-tune for 250k steps using 30096 sequences
of 21 frames also at 512 x 512 resolution. For both versions,
a series of color, exposure and degradation augmentations is
employed. The training takes 50 hours for the image model
and 188 hours for the video model on 8 A100E GPUs.

4.2. Evaluation metrics, datasets and baselines

As is typical for lighting estimation methods, we compute
metrics on spheres relit with the predicted HDRI maps. This
allows comparing both the specular appearance and physical
accuracy of the HDRI on different materials. Concretely,
we render spheres of different materials with the predicted
HDR illumination: a perfect mirror, perfect diffuse, semi-
rough metallic (herein called matte), and perfectly glossy.
We evaluate our method for single image predictions on a
synthetic and a real dataset. The synthetic dataset consists of
28 scenes from Infinigen Indoor [3 1], in which 4 light probes
are randomly scattered in space. The Laval Indoor Spatially
Varying HDR dataset [17] is a real dataset of physical probes
placed in a scene and captured in HDR. Because mirror light
probes are not perfectly reflective, the authors of the original
dataset graciously shared the reflectivity of the sphere used
(74%), which we used to adjust the HDR probes and treated
as ground truth. For video predictions, we take 5 of the
Blender demo files [2] and augment them by animating the
cameras, moving probes and modifying the light sources.
We compare our method against DiffusionLight [30] and 4D
Lighting [41] using their public implementations.

We report RMSE to inform the intensity of the predicted
illuminance, SI-RMSE and SSIM as indicators of the struc-
ture of the predictions, and RGB angular error to assess
the color reconstruction. For temporal results, as is typical
of video lighting tasks [29], we report T-LPIPS, LPIPS on
neighboring frames. However, to account for the motion
of the ground truth scene, we also report T-LPIPS-Diff, the
absolute difference between T-LPIPS of the prediction and



RMSE, SI-RMSE, SSIM; Ang. Eir.,

Dataset  Method Mirr Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Matte
DiffLight ~ 0.40 0.47 048 043 1.52 0.70 0.70 0.85 0.68 0.83 0.81 0.83 143 9.7 9.4 9.8
Infinigen 4D Lighting ~ 0.34 0.36 0.38 038 136 062 064 074 072 086 085 0.84 147 112 11.5 116
LIMo (image) 0.25 0.16 0.16 0.17 0.41 0.11 0.13 0.18 0.78 0.95 0.94 095 4.4 2.3 22 24

LIMo (video) 0.26 0.22 022 021 042 0.13 0.16 021 0.79 0.95 0.93 0.94 4.4 2.7 28 2.9
DiffLight ~ 0.50 0.49 0.51 0.49 1.40 0.91 0.89 0.99 0.70 0.80 0.78 0.80 10.3 8.2 82 7.8

Laval 4D Lighting 0.35 0.27 0.28 0.1 091 0.22 0.23 0.39 0.80 094 093 092 68 50 50 5.1
Indoor SV 1\ (image) 0.30 0.20 0.22 0.24 0.60 0.17 0.18 028 0.81 097 0.95 0.95 4.6 2.7 2.7 2.9
LIMo (video) 0.35 0.27 0.28 0.30 0.66 0.21 0.23 0.34 0.80 0.94 093 093 55 3.7 3.6 3.9

Table 1. Quantitative evaluation of lighting estimation on single images from the Infinigen [31] (top) and the Laval Indoor SV datasets [17]
(bottom). We compare the image and video versions of LIMO with “Diff.Light” [30] and “4D Lighting” [41]. “Mirr” (mirror), “Diff”

(diffuse), “Gloss” (glossy) and “Mat” (matte) refer to the different test spheres (see Sec. 4.2). Results are color coded by best ,

second and

third best. We observe that LIMO (image) outperforms the previous work in all cases.
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Figure 4. Sample predictions from the Infinigen test set [31] for, from left to right: DiffusionLight [30], 4D Lighting [41], and the image and
video versions of the proposed LIMO. We visualize predictions by rendering the same four test spheres used for the quantitative metrics (see
Tab. 1): mirror (top left), diffuse (top right), matte (bottom left) and glossy (bottom right).

the ground truth. In addition, we report the warped error,
computed by warping the current frame of the prediction by
the optical flow predicted from an off-the-shelf module [40]
and comparing with the RMSE of the next frame.

4.3. Single image results

Quantitative results for single image predictions are provided
in Tab. 1. On both synthetic and real data, our image model
performs better than the two baselines, with our video model
trailing close behind. We attribute the discrepancy between
both versions to the capacity of the respective models (12B
parameters for image vs 5B parameters for video) and to the

optimization for both quality and time consistency of the
video model. The metrics from 4D Lighting for Infinigen
differ from the numbers reported in Tong et al. [41] since we
sample a new set of scenes and spheres. The metrics confirm
that our method is better for predicting total illuminance
(from the RMSE), accurate geometry (from SI-RMSE and
SSIM), and better colors (from angular error). Diffusion-
Light, predicting a single HDRI for each scene, cannot adapt
to the 3D locations of the spheres’ placements, as reflected
in the lower scores. As for real scenes, our method achieves
better or equal (for video) results than 4D Lighting, showing
strong generalization to real images.



RMSE;  SI-RMSE| SSIM;  Ang. Err.| T-LPIPS T-LPIPS-Diff | Warped Err|
Dataset Method Mirr Diff Mirr Diff Mirr Diff Mirr Diff  Mirr Diff Mirr Diff Mirr Diff
4D Lighting  0.39 0.29 1.18 0.20 0.70 0.90 7.1 4.7 0.0048 0.0004 0.0418 0.0009 0.0439 0.0079
Dynamic 1 1Mo (image) 0.28 0.15 0.43 0.10 0.77 0.97 3.0 1.4 0.1340 0.0054 0.0886 0.0045 0.1887 0.0330
object LIMo (video) 0.30 0.18 0.45 0.12 0.78 0.97 4.5 3.0 0.0242 0.0014 0.0227 0.0013 0.0589 0.0134
4D Lighting  0.39 0.37 0.88 0.17 0.71 0.90 6.5 3.7 0.0057 0.0007 0.0279 0.0007 0.0354 0.0124
Dynamic LMo (image) 0.30 0.16 0.44 0.10 0.76 0.97 3.3 1.4 0.1051 0.0057 0.0715 0.0053 0.1500 0.0394
camera LIMoO (video) 0.30 0.23 0.47 0.12 0.77 0.97 4.4 2.5 0.0220 0.0010 0.0148 0.0011 0.0506 0.0122
4D Lighting  0.39 0.33 1.37 0.69 0.68 0.88 12.6 10.0 0.0030 0.0006 0.0067 0.0005 0.0158 0.0093
Dynamic 1 1Mo (image) 0.28 0.16 0.44 0.11 0.78 0.97 3.6 1.8 0.0162 0.0018 0.0085 0.0012 0.0336 0.0193
lighting LIMo (video) 0.34 0.22 0.49 0.14 0.76 0.96 4.7 2.9 0.0027 0.0008 0.0065 0.0005 0.0108 0.0076
4D Lighting  0.38 0.31 0.98 0.19 0.70 0.91 7.7 3.9 0.0071 0.0010 0.0496 0.0013 0.0558 0.0150
Combination LIMO (image) 0.29 0.16 0.46 0.11 0.77 0.97 3.7 1.9 0.1354 0.0075 0.0787 0.0060 0.1941 0.0463
LIMo (video) 0.33 0.23 0.48 0.15 0.77 0.95 4.6 2.7 0.0370 0.0031 0.0208 0.0030 0.0780 0.0250

Table 2. Quantitative evaluation of lighting estimation on dynamic scenes. We compare LIMO with “4D Lighting” [41]. “Mirr” (mitror) and
“Dift” (diffuse) refer to the different test spheres (see Sec. 4.2). Due to space limits, Glossy and Matte metrics are omitted and available in

the supplementary materials. Results are color coded by best , second best.

Visual samples from the predictions, shown in Fig. 4, visu-
ally demonstrate the higher quality reflections in comparison
to 4D Lighting and the better HDR predictions, particularly
when looking at the glossy highlights.

4.4. Video results

To evaluate the temporal results of our method, we devise
four test cases: dynamic object, dynamic camera, dynamic
lighting and a combination of the above. Our novel test set,
based on 5 augmented Blender demo files, is used for evalu-
ation. The scores presented in Tab. 2 tell a similar story for
the metrics per-frame, where our image model outperforms
4D Lighting, with our video model close second. However,
for the three temporal metrics, the video model beats the
image model. T-LPIPS, a typical measurement of lighting
consistency, is missleading as a certain amount of motion
is expected. To compensate, the T-LPIPS-Diff metric com-
pares the T-LPIPS of the prediction to that of the ground
truth. Here we see that in every mirror render, 4D Lighting
does not vary as much as it should, and our video model is
equal or close behind for diffuse renderings. Although we
observe lower warped L2 error metrics with 4D Lighting for
some experiments, we attribute them to over-smoothing from
the MLP formulation. This can be seen in our lower tem-
poral metrics for the lighting change scenario where abrupt
discontinuities are required. Moreover, to demonstrate the
capabilities of LIMoO, Fig. 5 shows samples from the test
dataset. Of note is the inability of 4D Lighting to vary the
lighting appropriately as the sphere is pushed farther into the
scene, whereas ours warps as is expected of 3D space. More
in-the-wild results can be found in Fig. | and the supplemen-
tary materials.

4.5. Ablations

To justify our design choices, we ablate the use of the diffuse
sphere for better HDRI predictions and the use of our novel
geometric maps as opposed to the depth maps uniquely. All
ablations are performed with the LIMO (image) model on the
Infinigen test set. Metrics are reported in Tab. 3, where we
observe that our full model performs better in every scenario.

Predicting the diffuse sphere The metrics validate the
effectiveness of using the predicted Diffuse sphere in con-
junction with the mirror sphere for the optimization of the
final HDRI. Notably, the color prediction, as informed from
the angular error, is worse when the diffuse sphere is omitted.

Geometric maps As discussed in Sec. 3.2, we observed
that depth maps of the spatial position are insufficient for the
network to properly inpaint a correctly-placed sphere. This
observation is illustrated in Fig. 6, where a sphere is kept
the same image space size, but pushed farther into the scene,
from shadow to direct sunlight. In the case of depth condi-
tioning only, the two inpainted spheres are nearly identical.
However, when introducing our novel geometric maps, the
network is able to interpret the position of the sphere in rela-
tion to the scene’s elements and correctly inpaint a shadowed
and lit sphere respectively. Those results are validated by
the metrics, where removing the geometric maps results in
worse performance than removing the diffuse sphere. Inter-
estingly, removing both the geometric maps and the diffuse
sphere results in slightly better scores than simply remov-
ing the geometric maps, justified by the fact that the diffuse
sphere helps predict the correct dynamic range only, when
the geometric information is correctly understood.
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Figure 5. Example qualitative prediction results on our proposed video test set. Observe how our predictions are more detailed and more
closely match the ground truth than the previous work 4D Lighting [41] as the sphere moves around the scene.

RMSE Si-RMSE | SSIMy Ang Err|,
Method Mirr  Diff Gloss Mat Mirr  Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Mat
w/o Diffuse, Geo 0.262 0.210 0.219 0.209 0.442 0.131 0.151 0.200 0.770 0.942 0.926 0.938 5.15 3.60 3.56 3.37
w/o Diffuse 0.253 0.207 0.215 0.204 0.431 0.127 0.145 0.189 0.776 0.943 0.929 0.939 4.95 3.39 3.35 3.19
w/o Geo 0.259 0.229 0.230 0.213 0.431 0.137 0.162 0.211 0.772 0.936 0.923 0.935 4.77 3.13 3.04 3.07

LIMo (full) 0.247 0.160 0.164 0.169 0.403 0.107 0.129 0.176 0.783 0.951 0.939 0.946 4.35 2.25 2.20 2.42

Table 3. Ablation of the use of the added geometric maps Iqir and I for predictions (see Sec. 3.2) and diffuse sphere for HDRI optimization
(see Sec. 3.1) on Infinigen with our image model. “Mirr” (mirror), “Diff” (diffuse), “Gloss” (glossy) and “Mat” (matte) refer to the different
test spheres (see Sec. 4.2). Results are color coded by best, second and third best..

Depth maps

5. Conclusion

w/0 geo maps w/ geo maps

In this paper we introduced LIMO, a method for spatiotem-
poral scene lighting estimation. We demonstrated that com-
bining geometrically grounded conditioning, the priors from
a pre-trained diffusion model, and multiple predictions of
diffuse and mirror spheres leads to state-of-the-art image and
video lighting estimation. Our method provides a high level
of physical accuracy and very good spatial understanding
and temporal stability. Nonetheless, LIMO remains limited
in several aspects. First, as rendered spheres in our dataset
have a spatial extent, the HDRI optimization problem is ill-
posed if a shadow is cast on the sphere or it is very close
to an object as the directional lighting model is not valid
anymore. Second, our method is limited to scenes and was
not trained to leverage certain lighting cues such as human
faces, present in many videos. Future work could account for
these by adopting a truly point-based lighting representation
and leveraging face datasets with known lighting.

Figure 6. The effect of our proposed geometric maps { i, Laist } on
lighting predictions. We insert a sphere near (top) and farther away
(bottom)—note that its screen space dimensions are the same so
the network cannot use this as a cue. Observe how the addition of
geometric maps (right) helps the network in reasoning about light
occlusions, which are not captured otherwise (middle).
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6. Data generation details

We use Blender, paired with BlenderKit assets to procedu-
rally generate indoor and outdoor renders. For indoor scenes,
we use the full indoor scenes provided by BlenderKit, gen-
erating more cameras based on the original ones. Since
scenes are not always completely modeled, we leverage ex-
isting camera assuming they point toward points of interest.
We randomly sample a direction from the original camera
frustrum to obtain a target lookat point using ray-casting.
Then we sample 3D points in the scene bounding box and
check the visibility of the selected lookat point from them.
If the point is visible from the sampled position, we consider
the location to be a valid camera location and create a new
camera pointed at the lookat.

For outdoor scenes, we select a central model from the
building, vehicle or nature categories of BlenderKit. We
add a ground plane, a random ground material, and add
surrounding buildings, objects and vegetation using particle
systems. We use HDRis from Polyhaven for lighting. We
then derive cameras pointed at the central object from which
itis visible. In total we use around 500 indoor scenes, reusing
them for different motion for a total of 4400 scenes, and
generate 1200 outdoor scenes. For each scene we render 4
viewpoints.

7. HDRI map optimization details

The predicted images from the network I are cropped
around the inpainted spheres. The same is done with the
sphere mask, normals and position maps. The equirectan-
gular HDRI is a Laplacian pyramid at a fixed resolution of
512x256 with 8 levels. We employ circular padding to lever-
age the cyclic nature of equirectangular maps. For faster
convergence and better conditioning, the HDRI is defined in
log, space. We optimize with Adam using a learning rate
of 5e—3 for 1000 iterations per frame, for a total of 21 000
steps.

At every step, we randomly select a frame ¢, sphere type
m (mirror or diffuse) and EV e from the predictions. The
Laplacian pyramid is recomposed and is transformed back to
linear space to obtain the HDRI map L;. Then, the renderer
'R is used to produce the image of corresponding sphere (mir-
ror or diffuse). This rendered image is exposed according
to the randomly selected EV and converted to sSRGB color
space to match the network’s prediction’s colors:

I, = sSRGB(2°R((Ly,m))). (7)

The loss function to optimize the HDRI representation is
defined as:

. AL L.
= M (bo(1y, 1) + §(€1(It7—[t71) + (I, It41))), (8)

with A = 0.1 in all our experiments. The 5 loss enforces
the rendered image to closely match the predicted image, and
the two following ¢; losses insure that the rendered image
be similar to the neighboring frames, allowing for temporal
smoothing. To prevent the saturated part of the image from
lowering the overall intensity of the optimized HDRI, we
define a saturation mask

0, I, >7and]I > T,
Msat:{ ! ! 9)

1, otherwise.

The renderer R is a two modes differentiable Monte Carlo
renderer for perfect mirror and perfect diffuse materials. The
perfect reflection is implementing the reflection equation

Vi — 2(v; - n;) ny, (10)

with v; computed from the sphere’s position map.
For the diffuse rendering, we first compute the luminance
of the HDRI to use as importance weight:

L =0.2126R + 0.7152G + 0.0722B an

The importance map for each pixel of the HDRI map is
computed as a multi-importance weighting of cosine and
luminance:

w; = (n; - ;) L; sin(r;), (12)
where 7; is the ray direction corresponding to pixel ¢ of the
HDRI map. It is then normalized:

w

722“’1

The corresponding probability distribution function is
computed by dividing the normalized importance map by
the solid angle of the equirectangular map

w 13)

PDF = . (14)
Ow
Samples s are drawn from the importance map w and the
final rendered colors R; is

1 LS(TM 'T’i)

Ri=g PDF
sesS

5)

We use 64 samples with sub-pixel sampling in all our
experiments.



RMSE SI-RMSE SSIMy Ang. Err.| T-LPIPS T-LPIPS-Diff |, Warped Err
Dataset Method Gloss Mat Gloss Mat Gloss Mat Gloss Mat  Gloss Mat Gloss Mat Gloss Mat

4D Lighting  0.30 0.33 0.21 0.34 0.89 0.88 4.6 4.9 0.0009 0.0006 0.0064 0.0016 0.0125 0.0099
Dynamic [ 1Mo (image) 0.15 0.16 0.12 0.17 0.96 0.97 1.4 1.7 00224 0.0138 0.0166 0.0117 0.0489 0.0575
object LIMo (video) 0.18 0.21 0.13 0.21 0.96 0.96 2.9 3.0 0.0025 0.0020 0.0053 0.0017 0.0200 0.0156

4D Lighting  0.38 0.37 0.18 0.31 0.89 0.88 3.8 4.3 0.0011 0.0010 0.0047 0.0007  0.0163 0.0142
Dynamic LMo (image) 0.16 0.17 0.12 0.18 0.96 097 1.4 1.8 0.0179 0.0114 0.0125 0.0102 0.0499 0.0541
camera LIMo (video) 0.21 0.23 0.13 0.21 0.96 0.96 2.4 3.0 0.0019 0.0015 0.0042 0.0012 0.0178 0.0150

4D Lighting  0.34 0.35 0.70 0.80 0.86 0.85 10.1 10.1 0.0008 0.0007 0.0011 0.0005 0.0095 0.0096
Dynamic 1 1Mo (image) 0.17 0.18 0.13 0.19 0.95 0.96 1.8 2.2 0.0032 0.0022 0.0018 0.0015 0.0203 0.0217
lighting LIMo (video) 0.22 0.25 0.15 0.24 0.94 0.95 2.8 3.2 0.0009 0.0008 0.0010 0.0005 0.0077 0.0077

4D Lighting  0.32 0.33 0.20 0.33 0.89 0.88 4.0 4.3 0.0017 0.0013 0.0103 0.0018 0.0217 0.0167
LiMo (image) 0.16 0.18 0.12 0.19 0.96 0.97 1.8 2.2 0.0249 0.0170 0.0137 0.0140 0.0615 0.0723
LIMo (video) 0.23 0.24 0.16 0.24 0.94 094 2.7 3.0 0.0048 0.0042 0.0072 0.0033 0.0337 0.0289

Combination

Table 4. Quantitative evaluation of lighting estimation on dynamic scenes for “Gloss” (glossy) and “Mat” (matte) spheres in complement to
Tab. 2. We compare LIMO with “4D Lighting” [41]. Results are color coded by best , second best.

Scene DiffusionLight 4D Lighting ~ LIMoO (image) LIMO (video)

Figure 7. Additional sample predictions from the Laval Indoor Spatially Varying test set [17] for, from left to right: DiffusionLight [30], 4D
Lighting [41], and the image and video versions of the proposed LIMO. We visualize predictions by rendering the same four test spheres
used for the quantitative metrics (see Tab. 1): mirror (top left), diffuse (top right), matte (bottom left) and glossy (bottom right).



8. Additional results

In complement to Tab. 2, Tab. 4 reports metrics on our se-
quences test dataset for glossy and matte spheres.

Sample predictions from The Laval Indoor Spatially Vary-
ing HDR dataset [17] are presented in Fig. 7.

More in-the-wild results are presented in Fig. 8. We make
use of the predicted pointcloud from the FOV and depthmap
as shadow catcher when inserting objects in the scene.



Diffuse

Object Insertion

Frame 1

Figure 8. Additional examples of our method on in-the-wild images and videos, with from left to right: the input frame, the predicted mirror
sphere at EV0, the predicted diffuse sphere at EV0 and the inserted object. The predicted pointcloud is used as shadow catcher.
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