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Object insertion Virtual Production
Figure 1. We present LIMO: a spatiotemporal lighting estimation method with accurate spatial grounding, full HDR and realistic reflections.

LIMO accurately grounds virtual objects over different spatial positions (1st and 2nd left), and over time (3rd left). LIMO can readily be used

in virtual production (right), for instance by inserting actors captured in light domes in real sets.

Abstract

We present Lighting in Motion (LIMO), a diffusion-based ap-

proach to spatiotemporal lighting estimation. LIMO targets

both realistic high-frequency detail prediction and accurate

illuminance estimation. To account for both, we propose

generating a set of mirrored and diffuse spheres at different

exposures, based on their 3D positions in the input. Making

use of diffusion priors, we fine-tune powerful existing diffu-

sion models on a large-scale customized dataset of indoor

and outdoor scenes, paired with spatiotemporal light probes.

For accurate spatial conditioning, we demonstrate that depth

alone is insufficient and we introduce a new geometric con-

dition to provide the relative position of the scene to the

target 3D position. Finally, we combine diffuse and mirror

predictions at different exposures into a single HDRI map

leveraging differentiable rendering. We thoroughly evaluate

our method and design choices to establish LIMO as state-

of-the-art for both spatial control and prediction accuracy.

1. Introduction

Humans have the inherent ability to determine whether a

virtual object inserted into an image belongs in the scene

or not [14, 38]. When an object’s shading does not har-

monize well with its surroundings, it creates a ªpasted-inº

effect where the object appears out of place, breaking real-

ism [32]. Whether the task is to composite an actor into an

environment or add an object to an image sequence, having

access to accurate lighting information is critical. Capturing

lighting has long been the default solution [9], notably by

inserting light probesÐtypically, mirror and diffuse spheres

reflecting the incoming light rays towards the cameraÐin the

scene and capturing them using high dynamic range (HDR)

photography [11]. However, this process requires physical

access to the location, the proper equipment to capture HDR

images, and time. Hence, the ability for computers to auto-
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matically estimate lighting given an image, or a sequence

of images, has potential impact for virtual and augmented

reality, filmmaking, and design.

We assert that a generally applicable lighting estimation

technique should have the five following capabilities:

1. It should allow for ªgroundingº its prediction in a specific

location in the scene, since lighting varies spatially as a

function of the relative position to the light sources and

occlusions [15]

2. It should adapt to temporal variations: a moving camera

revealing unseen light sources, moving objects causing

occlusions, or changing lighting conditions

3. It must predict accurate HDR luminance values, includ-

ing for large areas of indirect light reflecting from ob-

jects in the scene as well as for concentrated, orders-of-

magnitude brighter light sources

4. It should be able to estimate near-field light sources in-

doors as well as distant environmental light outside

5. It should estimate plausible lighting distributions in-

cluding high-frequency environmental detail and low-

frequency directional illuminance, even though estimat-

ing such information is typically under-constrained

Previous methods focused on subsets of these specifica-

tions to break the problem into pieces. For example, methods

proposed to estimate a single global lighting estimate from

images [15, 23, 30] or videos [28]. Others predict spatially-

varying lighting but are targeted for indoors [25, 35] or out-

doors [50]. Recent works deal with spatiotemporal varia-

tions [26, 41], but we find they struggle in properly ground-

ing the predictions within the local context of the scene.

In this paper, we present what we believe to be the first

approach to address all five capabilities in a single frame-

work. Our approach provides lighting predictions that can be

grounded at a specific 3D position, vary through time, pre-

dict accurate HDR values, works both indoors and outdoors,

and generates realistic details for reflections.

Our method, dubbed Lighting in Motion (LIMO), works

as follows: given a monocular image/video and a sequence

of positions in the scene, we first use an off-the-shelf pre-

dictor [5] to recover per-pixel depth. Using the depth and

lighting estimation positions we compute a set of geomet-

ric maps that are used to condition a diffusion model. The

network, specifically fine-tuned for the task, outputs either a

mirror or diffuse sphere at the desired locations, and at a spe-

cific exposure value. By querying the network for multiple

combinations of mirror/diffuse spheres and exposure values,

we obtain a stack of exposure brackets for both the diffuse

and mirror spheres at each position. These outputs are sub-

sequently fused for each position into a single HDRI, which

are combined into a sequence. To evaluate the method, we

present a novel video lighting estimation test dataset made

from realistic synthetic data.

Our work makes the following contributions:

• LIMO, a diffusion-based method to predict full HDR

lighting at any 3D point in a scene, and at any time in a

video.

• New geometric maps to condition the diffusion-based

generator, which we demonstrate are critical for accu-

rate spatially-varying predictions.

• A mirror and diffuse multi-bracket approach to light-

ing estimation which provides both realistic and more

physically accurate estimation.

2. Related work

Image-based lighting (IBL)

Classic Image-Based Lighting photographs light probes,

typically mirror and diffuse spheres [9, 33], to construct

HDRI maps and render realistic virtual objects. Hardware

and physical constraints prohibit the use of such techniques

if physical access to the scene is impossible, and as such,

methods for estimating lighting from images have been pro-

posed.

Single image lighting estimation

Early approaches estimated environment lighting from

images using cues such as reflections, shadows, and ge-

ometry [22, 34]. Of course, learning-based methods out-

performed their predecessors by proposing approaches that

directly regress HDR lighting representations from single im-

ages of indoor scenes [15, 16, 46], outdoor scenes [20, 47],

or both [6, 8, 23, 30], or a scene with a human face [24].

The interested reader is invited to consult the survey of Ein-

abadi et al. [13] for more details. The aforementioned ap-

proaches typically estimate lighting either at the center of

the image or at a single point in the scene.

Spatially-varying lighting estimation

Since lighting can vary drastically across the field of view,

some methods accept a specific location as input, and predict

the lighting at that point as an HDRI map [1, 35] or spherical

harmonics [17]. Other methods predict a dense lighting

representation, for example at each pixel location in a 2D

grid of spherical gaussians [25, 49] or as a volumetric, either

using a voxel grid of spherical gaussians [44], or an implicit

representation [36]. Other spatially-varying approaches have

been proposed for outdoor scenes [39, 50].

Spatiotemporal lighting estimation

Lighting can also change over time: flipping a light

switch, or panning the camera to a bright window, create

drastic changes in lighting that can be estimated by con-

structing a spatiotemporal volume [26]. Concurrent to this

work, LuxDiT [28] predict temporally-varying HDRI maps.

Finally, and most closely related to our work, Tong et al. [41]

adapt a diffusion model for generating multiple spheres

across the field of view, and subsequently build a unique

implicit representation over the video through a NeRF-like

approach. However, as we will demonstrate, it tends to
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Figure 2. Overview of LIMO, our proposed diffusion-based spatiotemporal lighting estimation method. From an input image (or video

sequence) and a 3D scene point, we first obtain an estimate of the per-pixel depth (1, top). From this, a set of condition maps are computed

(1, bottom). These maps, along with a text prompt, are used to condition a diffusion model (2) which is trained to inpaint a sphere at the

desired 3D scene point. The model learns to predict spheres at different exposures and materials (metallic or diffuse). The predicted spheres

are merged into a single HDRI map (3) through a differentiable rendering approach.

generate results that are overly smooth and do not properly

capture the dynamics of lighting.

Diffusion-based rendering

It has been recently shown that virtual object insertion

can be performed as a learning task, through diffusion-based

rendering [27, 45, 48] or harmonization [4, 19], bypassing

the need for acquiring or estimating an HDR map. While

these approaches offer a promising new paradigm for image

compositing, they lack the artistic control offered by the

traditional IBL pipeline. Here, we focus on explicit HDR

lighting recovery in the form of HDRI maps, as they can

readily be used in existing, production-ready object com-

positing frameworks.

3. Method

We present LIMO, which adapts image and video generative

models to predict spatially-varying HDR illumination in a

single image, or a video sequence.

3.1. General approach

Our approach consists of using priors from a diffusion model

to inpaint a diffuse or mirror sphere at a specific 3D position

in space, and at a given exposure value. At test time, the

model is run multiple times to generate both diffuse and

mirror spheres at multiple exposures, and predictions are

subsequently merged to a single HDRI.

Contrary to some recent work [6, 30] that only rely on

mirror spheres, we argue that accurate HDR lighting estima-

tion is greatly facilitated by using diffuse spheres. Mirror

spheres are a great way to obtain plausible reflections but

the estimation of luminance values for concentrated light

sources relies on a very small number of pixels and requires

many exposure values [37]. With a diffuse sphere, the en-

ergy of concentrated light sources is integrated to moderate

exposure levels by the diffuse surface and becomes easier

to estimate accurately from fewer exposure levels [10]. Fig-

ure 2 shows an overview of our proposed method. Next, we

elaborate on how we condition the diffusion model (Sec. 3.2),

the dataset used for fine-tuning it (Sec. 3.3), and the HDRI

reconstruction at test time (Sec. 3.4).

3.2. Model conditioning

We fine-tune a diffusion model, conditioning it on an input

image or video, additional maps, and text. For clarity, we

describe what is done for single images, but our approach

handles videos by using a video model or applying the image

model independently on each image sequentially.

RGB and geometry conditioning To allow accurate light-

ing estimation, we curate multiple input maps used as condi-

tioning to the diffusion model. These input maps are channel-

wise concatenated to the input noise and the first layer of the

model is expanded to accommodate these extra channels.

First, we provide the RGB image as input Irgb. The region

corresponding to the sphere to inpaint is set to black to pre-

vent the background from spilling into the sphere. Second,

we provide the depth of the background image Id, estimated



from an off-the-shelf depth predictor [5], with the depth of

the sphere to inpaint.

As we will later demonstrate (see Sec. 4.5), we found that

providing only the depth of the scene and sphere, as in [41],

is insufficient for accurately grounding the light prediction

at a specific 3D point in the scene. We therefore provide

three additional maps: a normal map of the sphere In, and

two novel maps capturing the geometric relations, providing

context between the scene and the sphere.

Those geometric maps relate the scene’s surfaces to the

sphere’s position: for a given pixel i in the image, we de-

fine the direction Idir,i and distance Idist,i from the 3D point

corresponding to i to the sphere as

Idir,i =











pi − c

∥pi − c∥
, if not on sphere,

vi − 2(vi · ni)ni, if on sphere,

(1)

and

Idist,i = ∥pi − ci∥ . (2)

Here, pi are the (x, y, z) pixel world coordinates, computed

from the pixel depth and view direction vector vi obtained

using the estimated camera field of view from an off-the-

shelf method [43], and c is the coordinates of the sphere

center. For pixels on the sphere, we use the reflected in-

coming ray direction, computed using ni, the sphere surface

normal and vi. Intuitively, this map allows the model to

match the reflected direction at a given pixel on the sphere

and points in the scene that are in the same direction from

the sphere center. These geometric quantities are expressed

in the camera coordinate system.

The image Irgb is assumed to be in sRGB color space,

and both the depth map Id and distance to sphere map Idist

are log-normalized. All maps {Irgb, In, Id, Idir, Idist} are in-

dividually encoded to latent space using the pre-trained VAE

encoder, and subsequently channel-wise concatenated. To al-

low more channels, the patch embedding convolution of the

denoising network is adapted by copying and dividing the

initial pre-trained weights by the number of added channels.

At training time, the ground truth per-pixel depth Id and

camera field of view are used to compute the maps. At test

time, we rely on pre-trained estimators (Chen et al. [5] for

depth and Wang et al. [43] for field of view).

Exposure conditioning Similar to Bolduc et al. [3], we

train the model to accept an exposure value (EV) as text

prompt, given to the network using the pre-trained text en-

coder. Contrary to methods which interpolate between 2

extreme exposures [30, 41], we found that giving a discrete

number of EVs is effective for accurate EV predictions. In

practice, we set EVs to {0,−3,−6,−9,−12}. During train-

ing, the corresponding EV image sphere is given as target,

keeping regions outside the sphere at the original EV0.

Multi-sphere predictions An additional text prompt is

given to condition on which sphere to inpaint (mirror or

diffuse). Including both the type of sphere and the exposure

value, the final text prompt has the form ª{sphere type}
[EVvalue]º (e.g., ªDiffuse sphere [EV0]º).
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Figure 3. Sample frames from the training dataset, illustrating the

three animation scenarios. In addition to the mirror spheres, the

diffuse spheres and the empty scene are also rendered (not shown).

Note that, while multiple spheres are rendered simultaneously for

more efficient data generation, at training and inference the network

regresses only one sphere at a time.

3.3. Dataset

To train our approach, physically acquiring a dataset of

ground truth HDR lighting moving in space in dynamic light-

ing would require a highly controllable environment. Instead,

we turn to synthetic scenes to generate sequences and their

associated ground truth illumination. We use Blender [7],

paired with BlenderKit [12] assets to procedurally generate

both indoor and outdoor renderings. More details on this

process are available in the supplementary materials.

To render a data sample, we randomly select a scene (in-

door or outdoor), select a random camera pose, and first

obtain a normal RGB rendering. We then generate training

targets by placing a grid of spheres in the scene, disabling

their visibility to both other spheres and the scene. They

are equally-spaced and sized in image space and of random

depth. Even though our training is done on a single sphere,

packing a sphere grid provides multiple data points per ren-

der and viewpoints, allowing for a random sphere selection

as training sample. Each sphere depth is computed using the

following factor :

δ = dmin + (dmax − dmin)u
α, (3)



with dmin = 0.25, dmax = 0.98, α = 0.4 and u ∼ U(0, 1).
To obtain the scene scale depth for each sphere, the sampled

depth factor is multiplied by the scene’s minimum depth

over the area of the sphere:

dsph = δmin(Id ⊙Msph), (4)

where Id is the first render’s depth and Msph is a binary

mask of the sphere’s footprint in image space. Finally, the

3D radius is computed according to the sampled depth and

camera’s field of view to allow fixed image space radius.

The sphere is rendered with two materials: perfect mirror

(roughness = 0, metallic = 1, albedo = (1,1,1) and perfect

diffuse (roughness = 1, metallic = 0, albedo = (1,1,1)). Im-

ages are rendered as float16 EXR, retaining the high dynamic

range. We also save the depth and sphere masks layers, along

with the intrinsic camera matrix and the sphere’s 3D position

and world radius. These extra layers enable the computation

of all our condition maps.

For video sequence data generation, the approach is

adapted to 3 scenarios, illustrated in Fig. 3.

Dynamic sphere position In this scenario the camera is

static and the spheres are moving. A random image space

offset (x′, y′) is selected x′ ∼ U(0,W ), y′ ∼ U(0, H),
where W and H are the image width and height respectively.

The spheres will move by this offset in image space over the

sequence. For depth, an additional factor is sampled for the

last frame and the 3D position and world size of the sphere

is interpolated through the sequence.

Dynamic camera We procedurally generate two camera

poses in the scene and interpolate between them. The abso-

lute distance to the sphere is interpolated between the first

and last frame with a fixed depth factor to insure smoothness

of movement.

Dynamic lighting The lighting is made dynamic by ran-

domly rotating the azimuth of the HDRI map, randomly

changing the scene’s light source intensities, and randomly

rotating the ªSunº light.

3.4. Equirectangular HDRI map optimization

At inference, the diffusion model is queried multiple times

to generate both mirrored and diffuse spheres at different ex-

posures. We obtain a final HDRI by merging the predictions.

For this, we define a rendering function R(Lt,m),
which renders a sphere of material m ∈ M, with M =
{mirror, diffuse}, under HDRI lighting Lt. We then seek to

find

argmin
L

∑

t∈T

∑

e∈E

∑

m∈M

ℓ (π(e,m, t)− eR(Lt,m)) , (5)

where π(e,m, t) is the fine-tuned generative model con-

ditioned on frame t, exposure e ∈ E , where E =
2{EV0,EV

−3,...} and material m, and ℓ is the loss function:

ℓ = ℓ2(ŷt, yt) +
λ

2
(ℓ1(ŷt, ŷt−1) + ℓ1(ŷt, ŷt+1)). (6)

L is initialized at a constant gray value (0.5), and Adam is

used to optimize Eq. (5) through gradient descent, as we

employ differentiable rendering to implement R. The latter

is implemented in PyTorch as a two modes renderer: re-

flective and diffuse with cosine and light multi-importance

sampling. In practice, we randomly alternate between expo-

sures and materials at each iteration instead of summing over

all possibilities. To speedup convergence, we also employ a

Laplacian pyramid representation for L [18].

4. Experiments

4.1. Implementation details

We train two models: an image diffusion model and a video

diffusion model. We fine-tune the full image Flux.1 Schnell

model [21] for 150k steps using 12896 images at 512× 512
resolution. For the video model, we use Wan2.2 5B [42]

model and fine-tune for 250k steps using 30096 sequences

of 21 frames also at 512× 512 resolution. For both versions,

a series of color, exposure and degradation augmentations is

employed. The training takes 50 hours for the image model

and 188 hours for the video model on 8 A100E GPUs.

4.2. Evaluation metrics, datasets and baselines

As is typical for lighting estimation methods, we compute

metrics on spheres relit with the predicted HDRI maps. This

allows comparing both the specular appearance and physical

accuracy of the HDRI on different materials. Concretely,

we render spheres of different materials with the predicted

HDR illumination: a perfect mirror, perfect diffuse, semi-

rough metallic (herein called matte), and perfectly glossy.

We evaluate our method for single image predictions on a

synthetic and a real dataset. The synthetic dataset consists of

28 scenes from Infinigen Indoor [31], in which 4 light probes

are randomly scattered in space. The Laval Indoor Spatially

Varying HDR dataset [17] is a real dataset of physical probes

placed in a scene and captured in HDR. Because mirror light

probes are not perfectly reflective, the authors of the original

dataset graciously shared the reflectivity of the sphere used

(74%), which we used to adjust the HDR probes and treated

as ground truth. For video predictions, we take 5 of the

Blender demo files [2] and augment them by animating the

cameras, moving probes and modifying the light sources.

We compare our method against DiffusionLight [30] and 4D

Lighting [41] using their public implementations.

We report RMSE to inform the intensity of the predicted

illuminance, SI-RMSE and SSIM as indicators of the struc-

ture of the predictions, and RGB angular error to assess

the color reconstruction. For temporal results, as is typical

of video lighting tasks [29], we report T-LPIPS, LPIPS on

neighboring frames. However, to account for the motion

of the ground truth scene, we also report T-LPIPS-Diff, the

absolute difference between T-LPIPS of the prediction and



RMSE↓ SI-RMSE↓ SSIM↑ Ang. Err.↓

Dataset Method Mirr Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Matte

Infinigen

Diff.Light 0.40 0.47 0.48 0.43 1.52 0.70 0.70 0.85 0.68 0.83 0.81 0.83 14.3 9.7 9.4 9.8

4D Lighting 0.34 0.36 0.38 0.38 1.36 0.62 0.64 0.74 0.72 0.86 0.85 0.84 14.7 11.2 11.5 11.6

LIMO (image) 0.25 0.16 0.16 0.17 0.41 0.11 0.13 0.18 0.78 0.95 0.94 0.95 4.4 2.3 2.2 2.4

LIMO (video) 0.26 0.22 0.22 0.21 0.42 0.13 0.16 0.21 0.79 0.95 0.93 0.94 4.4 2.7 2.8 2.9

Laval
Indoor SV

Diff.Light 0.50 0.49 0.51 0.49 1.40 0.91 0.89 0.99 0.70 0.80 0.78 0.80 10.3 8.2 8.2 7.8

4D Lighting 0.35 0.27 0.28 0.31 0.91 0.22 0.23 0.39 0.80 0.94 0.93 0.92 6.8 5.0 5.0 5.1

LIMO (image) 0.30 0.20 0.22 0.24 0.60 0.17 0.18 0.28 0.81 0.97 0.95 0.95 4.6 2.7 2.7 2.9

LIMO (video) 0.35 0.27 0.28 0.30 0.66 0.21 0.23 0.34 0.80 0.94 0.93 0.93 5.5 3.7 3.6 3.9

Table 1. Quantitative evaluation of lighting estimation on single images from the Infinigen [31] (top) and the Laval Indoor SV datasets [17]

(bottom). We compare the image and video versions of LIMO with ªDiff.Lightº [30] and ª4D Lightingº [41]. ªMirrº (mirror), ªDiffº

(diffuse), ªGlossº (glossy) and ªMatº (matte) refer to the different test spheres (see Sec. 4.2). Results are color coded by best , second and

third best. We observe that LIMO (image) outperforms the previous work in all cases.

Scene DiffusionLight 4D Lighting LIMO (image) LIMO (video) GT

Figure 4. Sample predictions from the Infinigen test set [31] for, from left to right: DiffusionLight [30], 4D Lighting [41], and the image and

video versions of the proposed LIMO. We visualize predictions by rendering the same four test spheres used for the quantitative metrics (see

Tab. 1): mirror (top left), diffuse (top right), matte (bottom left) and glossy (bottom right).

the ground truth. In addition, we report the warped error,

computed by warping the current frame of the prediction by

the optical flow predicted from an off-the-shelf module [40]

and comparing with the RMSE of the next frame.

4.3. Single image results

Quantitative results for single image predictions are provided

in Tab. 1. On both synthetic and real data, our image model

performs better than the two baselines, with our video model

trailing close behind. We attribute the discrepancy between

both versions to the capacity of the respective models (12B

parameters for image vs 5B parameters for video) and to the

optimization for both quality and time consistency of the

video model. The metrics from 4D Lighting for Infinigen

differ from the numbers reported in Tong et al. [41] since we

sample a new set of scenes and spheres. The metrics confirm

that our method is better for predicting total illuminance

(from the RMSE), accurate geometry (from SI-RMSE and

SSIM), and better colors (from angular error). Diffusion-

Light, predicting a single HDRI for each scene, cannot adapt

to the 3D locations of the spheres’ placements, as reflected

in the lower scores. As for real scenes, our method achieves

better or equal (for video) results than 4D Lighting, showing

strong generalization to real images.



RMSE↓ SI-RMSE↓ SSIM↑ Ang. Err.↓ T-LPIPS↓ T-LPIPS-Diff↓ Warped Err↓

Dataset Method Mirr Diff Mirr Diff Mirr Diff Mirr Diff Mirr Diff Mirr Diff Mirr Diff

Dynamic

object

4D Lighting 0.39 0.29 1.18 0.20 0.70 0.90 7.1 4.7 0.0048 0.0004 0.0418 0.0009 0.0439 0.0079

LIMO (image) 0.28 0.15 0.43 0.10 0.77 0.97 3.0 1.4 0.1340 0.0054 0.0886 0.0045 0.1887 0.0330

LIMO (video) 0.30 0.18 0.45 0.12 0.78 0.97 4.5 3.0 0.0242 0.0014 0.0227 0.0013 0.0589 0.0134

Dynamic
camera

4D Lighting 0.39 0.37 0.88 0.17 0.71 0.90 6.5 3.7 0.0057 0.0007 0.0279 0.0007 0.0354 0.0124

LIMO (image) 0.30 0.16 0.44 0.10 0.76 0.97 3.3 1.4 0.1051 0.0057 0.0715 0.0053 0.1500 0.0394

LIMO (video) 0.30 0.23 0.47 0.12 0.77 0.97 4.4 2.5 0.0220 0.0010 0.0148 0.0011 0.0506 0.0122

Dynamic

lighting

4D Lighting 0.39 0.33 1.37 0.69 0.68 0.88 12.6 10.0 0.0030 0.0006 0.0067 0.0005 0.0158 0.0093

LIMO (image) 0.28 0.16 0.44 0.11 0.78 0.97 3.6 1.8 0.0162 0.0018 0.0085 0.0012 0.0336 0.0193

LIMO (video) 0.34 0.22 0.49 0.14 0.76 0.96 4.7 2.9 0.0027 0.0008 0.0065 0.0005 0.0108 0.0076

Combination

4D Lighting 0.38 0.31 0.98 0.19 0.70 0.91 7.7 3.9 0.0071 0.0010 0.0496 0.0013 0.0558 0.0150

LIMO (image) 0.29 0.16 0.46 0.11 0.77 0.97 3.7 1.9 0.1354 0.0075 0.0787 0.0060 0.1941 0.0463

LIMO (video) 0.33 0.23 0.48 0.15 0.77 0.95 4.6 2.7 0.0370 0.0031 0.0208 0.0030 0.0780 0.0250

Table 2. Quantitative evaluation of lighting estimation on dynamic scenes. We compare LIMO with ª4D Lightingº [41]. ªMirrº (mirror) and

ªDiffº (diffuse) refer to the different test spheres (see Sec. 4.2). Due to space limits, Glossy and Matte metrics are omitted and available in

the supplementary materials. Results are color coded by best , second best.

Visual samples from the predictions, shown in Fig. 4, visu-

ally demonstrate the higher quality reflections in comparison

to 4D Lighting and the better HDR predictions, particularly

when looking at the glossy highlights.

4.4. Video results

To evaluate the temporal results of our method, we devise

four test cases: dynamic object, dynamic camera, dynamic

lighting and a combination of the above. Our novel test set,

based on 5 augmented Blender demo files, is used for evalu-

ation. The scores presented in Tab. 2 tell a similar story for

the metrics per-frame, where our image model outperforms

4D Lighting, with our video model close second. However,

for the three temporal metrics, the video model beats the

image model. T-LPIPS, a typical measurement of lighting

consistency, is missleading as a certain amount of motion

is expected. To compensate, the T-LPIPS-Diff metric com-

pares the T-LPIPS of the prediction to that of the ground

truth. Here we see that in every mirror render, 4D Lighting

does not vary as much as it should, and our video model is

equal or close behind for diffuse renderings. Although we

observe lower warped L2 error metrics with 4D Lighting for

some experiments, we attribute them to over-smoothing from

the MLP formulation. This can be seen in our lower tem-

poral metrics for the lighting change scenario where abrupt

discontinuities are required. Moreover, to demonstrate the

capabilities of LIMO, Fig. 5 shows samples from the test

dataset. Of note is the inability of 4D Lighting to vary the

lighting appropriately as the sphere is pushed farther into the

scene, whereas ours warps as is expected of 3D space. More

in-the-wild results can be found in Fig. 1 and the supplemen-

tary materials.

4.5. Ablations

To justify our design choices, we ablate the use of the diffuse

sphere for better HDRI predictions and the use of our novel

geometric maps as opposed to the depth maps uniquely. All

ablations are performed with the LIMO (image) model on the

Infinigen test set. Metrics are reported in Tab. 3, where we

observe that our full model performs better in every scenario.

Predicting the diffuse sphere The metrics validate the

effectiveness of using the predicted Diffuse sphere in con-

junction with the mirror sphere for the optimization of the

final HDRI. Notably, the color prediction, as informed from

the angular error, is worse when the diffuse sphere is omitted.

Geometric maps As discussed in Sec. 3.2, we observed

that depth maps of the spatial position are insufficient for the

network to properly inpaint a correctly-placed sphere. This

observation is illustrated in Fig. 6, where a sphere is kept

the same image space size, but pushed farther into the scene,

from shadow to direct sunlight. In the case of depth condi-

tioning only, the two inpainted spheres are nearly identical.

However, when introducing our novel geometric maps, the

network is able to interpret the position of the sphere in rela-

tion to the scene’s elements and correctly inpaint a shadowed

and lit sphere respectively. Those results are validated by

the metrics, where removing the geometric maps results in

worse performance than removing the diffuse sphere. Inter-

estingly, removing both the geometric maps and the diffuse

sphere results in slightly better scores than simply remov-

ing the geometric maps, justified by the fact that the diffuse

sphere helps predict the correct dynamic range only, when

the geometric information is correctly understood.
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Figure 5. Example qualitative prediction results on our proposed video test set. Observe how our predictions are more detailed and more

closely match the ground truth than the previous work 4D Lighting [41] as the sphere moves around the scene.

RMSE↓ Si-RMSE↓ SSIM↑ Ang Err↓

Method Mirr Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Mat Mirr Diff Gloss Mat

w/o Diffuse, Geo 0.262 0.210 0.219 0.209 0.442 0.131 0.151 0.200 0.770 0.942 0.926 0.938 5.15 3.60 3.56 3.37

w/o Diffuse 0.253 0.207 0.215 0.204 0.431 0.127 0.145 0.189 0.776 0.943 0.929 0.939 4.95 3.39 3.35 3.19

w/o Geo 0.259 0.229 0.230 0.213 0.431 0.137 0.162 0.211 0.772 0.936 0.923 0.935 4.77 3.13 3.04 3.07

LIMO (full) 0.247 0.160 0.164 0.169 0.403 0.107 0.129 0.176 0.783 0.951 0.939 0.946 4.35 2.25 2.20 2.42

Table 3. Ablation of the use of the added geometric maps Idir and Idist for predictions (see Sec. 3.2) and diffuse sphere for HDRI optimization

(see Sec. 3.1) on Infinigen with our image model. ªMirrº (mirror), ªDiffº (diffuse), ªGlossº (glossy) and ªMatº (matte) refer to the different

test spheres (see Sec. 4.2). Results are color coded by best , second and third best..

Depth maps w/o geo maps w/ geo maps

N
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r
F
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Figure 6. The effect of our proposed geometric maps {Idir, Idist} on

lighting predictions. We insert a sphere near (top) and farther away

(bottom)Ðnote that its screen space dimensions are the same so

the network cannot use this as a cue. Observe how the addition of

geometric maps (right) helps the network in reasoning about light

occlusions, which are not captured otherwise (middle).

5. Conclusion

In this paper we introduced LIMO, a method for spatiotem-

poral scene lighting estimation. We demonstrated that com-

bining geometrically grounded conditioning, the priors from

a pre-trained diffusion model, and multiple predictions of

diffuse and mirror spheres leads to state-of-the-art image and

video lighting estimation. Our method provides a high level

of physical accuracy and very good spatial understanding

and temporal stability. Nonetheless, LIMO remains limited

in several aspects. First, as rendered spheres in our dataset

have a spatial extent, the HDRI optimization problem is ill-

posed if a shadow is cast on the sphere or it is very close

to an object as the directional lighting model is not valid

anymore. Second, our method is limited to scenes and was

not trained to leverage certain lighting cues such as human

faces, present in many videos. Future work could account for

these by adopting a truly point-based lighting representation

and leveraging face datasets with known lighting.
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6. Data generation details

We use Blender, paired with BlenderKit assets to procedu-

rally generate indoor and outdoor renders. For indoor scenes,

we use the full indoor scenes provided by BlenderKit, gen-

erating more cameras based on the original ones. Since

scenes are not always completely modeled, we leverage ex-

isting camera assuming they point toward points of interest.

We randomly sample a direction from the original camera

frustrum to obtain a target lookat point using ray-casting.

Then we sample 3D points in the scene bounding box and

check the visibility of the selected lookat point from them.

If the point is visible from the sampled position, we consider

the location to be a valid camera location and create a new

camera pointed at the lookat.

For outdoor scenes, we select a central model from the

building, vehicle or nature categories of BlenderKit. We

add a ground plane, a random ground material, and add

surrounding buildings, objects and vegetation using particle

systems. We use HDRis from Polyhaven for lighting. We

then derive cameras pointed at the central object from which

it is visible. In total we use around 500 indoor scenes, reusing

them for different motion for a total of 4400 scenes, and

generate 1200 outdoor scenes. For each scene we render 4

viewpoints.

7. HDRI map optimization details

The predicted images from the network Î are cropped

around the inpainted spheres. The same is done with the

sphere mask, normals and position maps. The equirectan-

gular HDRI is a Laplacian pyramid at a fixed resolution of

512x256 with 8 levels. We employ circular padding to lever-

age the cyclic nature of equirectangular maps. For faster

convergence and better conditioning, the HDRI is defined in

log2 space. We optimize with Adam using a learning rate

of 5e−3 for 1000 iterations per frame, for a total of 21 000

steps.

At every step, we randomly select a frame t, sphere type

m (mirror or diffuse) and EV e from the predictions. The

Laplacian pyramid is recomposed and is transformed back to

linear space to obtain the HDRI map Lt. Then, the renderer

R is used to produce the image of corresponding sphere (mir-

ror or diffuse). This rendered image is exposed according

to the randomly selected EV and converted to sRGB color

space to match the network’s prediction’s colors:

Ît = sRGB(2eR((Lt,m))). (7)

The loss function to optimize the HDRI representation is

defined as:

ℓ = Msat(ℓ2(Ît, It) +
λ

2
(ℓ1(Ît, Ît−1) + ℓ1(Ît, Ît+1))), (8)

with λ = 0.1 in all our experiments. The ℓ2 loss enforces

the rendered image to closely match the predicted image, and

the two following ℓ1 losses insure that the rendered image

be similar to the neighboring frames, allowing for temporal

smoothing. To prevent the saturated part of the image from

lowering the overall intensity of the optimized HDRI, we

define a saturation mask

Msat =

{

0, Ît > τ and It > τ,

1, otherwise.
(9)

The renderer R is a two modes differentiable Monte Carlo

renderer for perfect mirror and perfect diffuse materials. The

perfect reflection is implementing the reflection equation

vi − 2(vi · ni)ni, (10)

with vi computed from the sphere’s position map.

For the diffuse rendering, we first compute the luminance

of the HDRI to use as importance weight:

L = 0.2126R+ 0.7152G+ 0.0722B (11)

The importance map for each pixel of the HDRI map is

computed as a multi-importance weighting of cosine and

luminance:

wi = (ni · ri)Li sin(ri), (12)

where ri is the ray direction corresponding to pixel i of the

HDRI map. It is then normalized:

w =
w

∑

i wi

. (13)

The corresponding probability distribution function is

computed by dividing the normalized importance map by

the solid angle of the equirectangular map

PDF =
w

∂ω
. (14)

Samples s are drawn from the importance map w and the

final rendered colors Ri is

Ri =
1

S

∑

s∈S

Ls(ni · ri)

PDF
. (15)

We use 64 samples with sub-pixel sampling in all our

experiments.



RMSE↓ SI-RMSE↓ SSIM↑ Ang. Err.↓ T-LPIPS↓ T-LPIPS-Diff↓ Warped Err↓

Dataset Method Gloss Mat Gloss Mat Gloss Mat Gloss Mat Gloss Mat Gloss Mat Gloss Mat

Dynamic

object

4D Lighting 0.30 0.33 0.21 0.34 0.89 0.88 4.6 4.9 0.0009 0.0006 0.0064 0.0016 0.0125 0.0099

LIMO (image) 0.15 0.16 0.12 0.17 0.96 0.97 1.4 1.7 0.0224 0.0138 0.0166 0.0117 0.0489 0.0575

LIMO (video) 0.18 0.21 0.13 0.21 0.96 0.96 2.9 3.0 0.0025 0.0020 0.0053 0.0017 0.0200 0.0156

Dynamic
camera

4D Lighting 0.38 0.37 0.18 0.31 0.89 0.88 3.8 4.3 0.0011 0.0010 0.0047 0.0007 0.0163 0.0142

LIMO (image) 0.16 0.17 0.12 0.18 0.96 0.97 1.4 1.8 0.0179 0.0114 0.0125 0.0102 0.0499 0.0541

LIMO (video) 0.21 0.23 0.13 0.21 0.96 0.96 2.4 3.0 0.0019 0.0015 0.0042 0.0012 0.0178 0.0150

Dynamic

lighting

4D Lighting 0.34 0.35 0.70 0.80 0.86 0.85 10.1 10.1 0.0008 0.0007 0.0011 0.0005 0.0095 0.0096

LIMO (image) 0.17 0.18 0.13 0.19 0.95 0.96 1.8 2.2 0.0032 0.0022 0.0018 0.0015 0.0203 0.0217

LIMO (video) 0.22 0.25 0.15 0.24 0.94 0.95 2.8 3.2 0.0009 0.0008 0.0010 0.0005 0.0077 0.0077

Combination

4D Lighting 0.32 0.33 0.20 0.33 0.89 0.88 4.0 4.3 0.0017 0.0013 0.0103 0.0018 0.0217 0.0167

LIMO (image) 0.16 0.18 0.12 0.19 0.96 0.97 1.8 2.2 0.0249 0.0170 0.0137 0.0140 0.0615 0.0723

LIMO (video) 0.23 0.24 0.16 0.24 0.94 0.94 2.7 3.0 0.0048 0.0042 0.0072 0.0033 0.0337 0.0289

Table 4. Quantitative evaluation of lighting estimation on dynamic scenes for ªGlossº (glossy) and ªMatº (matte) spheres in complement to

Tab. 2. We compare LIMO with ª4D Lightingº [41]. Results are color coded by best , second best.

Scene DiffusionLight 4D Lighting LIMO (image) LIMO (video) GT

Figure 7. Additional sample predictions from the Laval Indoor Spatially Varying test set [17] for, from left to right: DiffusionLight [30], 4D

Lighting [41], and the image and video versions of the proposed LIMO. We visualize predictions by rendering the same four test spheres

used for the quantitative metrics (see Tab. 1): mirror (top left), diffuse (top right), matte (bottom left) and glossy (bottom right).



8. Additional results

In complement to Tab. 2, Tab. 4 reports metrics on our se-

quences test dataset for glossy and matte spheres.

Sample predictions from The Laval Indoor Spatially Vary-

ing HDR dataset [17] are presented in Fig. 7.

More in-the-wild results are presented in Fig. 8. We make

use of the predicted pointcloud from the FOV and depthmap

as shadow catcher when inserting objects in the scene.
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Figure 8. Additional examples of our method on in-the-wild images and videos, with from left to right: the input frame, the predicted mirror

sphere at EV0, the predicted diffuse sphere at EV0 and the inserted object. The predicted pointcloud is used as shadow catcher.
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